Skip to main content
Log in

(K0.5Na0.5)NbO3-Bi(Cu2/3Nb1/3)O3 Lead-free Ceramics: Phase Transition, Enhanced Dielectric and Piezoelectric Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(1 − x)(K0.5Na0.5)NbO3-xBi(Cu2/3Nb1/3)O3 [(1 − x)KNN-xBCN, 0 ≤ x ≤ 0.02] lead-free piezoelectric ceramics were prepared by a solid-state reaction method. The effects of BCN addition on the phase transition, microstructure and electrical properties of ceramics were studied. X-ray diffraction and Raman spectroscopy analysis confirmed that the BCN has diffused into KNN to form a solid solution. Both polymorphic phase transition, T O-T, and Curie temperature, T c, gradually decreased with increasing the BCN content. Moreover, the relative permittivity (ε r) was increased greatly and the dielectric loss (tanδ) was almost decreased. Ferroelectric hysteresis loops (P–E) of samples showed that the remnant polarization (P r) was up to a maximum value with 26.52 μm/cm as x = 0.01. The piezoelectric properties of ceramics increased with increasing the x values. When x = 0.005 and 0.01, the ceramics exhibited high piezoelectric constant with 131 pC/N and 105 pC/N over a good piezoelectric stability under 350°C, respectively. These results indicate that BCN addition is an effective way to enhance the properties of KNN ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Liu, R.Q. Chu, Z.J. Xu, Y.J. Zhang, Q. Chen, and G.R. Li, Mater. Sci. Eng. B 176, 1463 (2011).

    Article  Google Scholar 

  2. X.L. Chen, F. He, J. Chen, Y.L. Wang, H.F. Zhou, and L. Fang, J. Mater. Sci. Mater. Electron. 25, 2634 (2014).

    Article  Google Scholar 

  3. P. Bharathi and B.R. Varma, J. Electron. Mater. 43, 493 (2014).

    Article  Google Scholar 

  4. H. Ping, P. Henson, and R.W. Johnson, I.E.E.E. Trans. Ind. Electron. 58, 2673 (2011).

    Article  Google Scholar 

  5. H. Wang, X. Zhai, J.W. Xu, C.L. Yuan, and C.R. Zhou, J. Electron. Mater. 24, 2469 (2013).

    Article  Google Scholar 

  6. S.J. Zhang, R. Xia, and T.R. Shrout, J. Electroceram. 19, 251 (2007).

    Article  Google Scholar 

  7. V. Bobnar, M. Hrovat, J. Holc, C. Filipič, A. Levstik, et al., J. Appl. Phys. 105, 954 (2009).

    Article  Google Scholar 

  8. Y. Guo, K. Kakimoto, and H. Ohsato, Solid State Commun. 129, 279 (2004).

    Article  Google Scholar 

  9. V. Bobnar, J. Bernard, and M. Kosec, Appl. Phys. Lett. 85, 994 (2004).

    Article  Google Scholar 

  10. J. Zhao, H. Du, S. Qu, J. Wang, H. Zhang, Y.M. Yang, and Z. Xu, J. Alloys Compd. 509, 3537 (2011).

    Article  Google Scholar 

  11. E.M. Alkoy and M. Papila, Ceram. Int. 36, 1921 (2010).

    Article  Google Scholar 

  12. M.H. Zhang, K. Wang, Y.J. Du, G. Dai, W. Sun, G. Li, D. Hu, H.C. Thong, C. Zhao, X.Q. Xi, Z.X. Yue, and J.F. Li, J. Am. Chem. Soc. 139, 3889 (2017).

    Article  Google Scholar 

  13. F.Z. Yao, K. Wang, W. Jo, K.G. Webber, T.P. Comyn, J.X. Ding, B. Xu, L.Q. Cheng, M.P. Zheng, Y.D. Hou, and J.F. Li, Adv. Funct. Mater. 26, 1217 (2016).

    Article  Google Scholar 

  14. Y.M. Li, Z.Y. Shen, F. Wu, T.Z. Pan, Z.M. Wang, and Z.G. Xiao, J. Electron. Mater. 25, 1028 (2014).

    Article  Google Scholar 

  15. K. Kakimoto, K. Akao, Y. Guo, and H. Ohsato, Jpn. J. Appl. Phys. 44, 7064 (2005).

    Article  Google Scholar 

  16. Y.B. Yao, H.T. Chan, C.L. Mak, and K.H. Wong, Thin Solid Films 537, 156 (2013).

    Article  Google Scholar 

  17. X.L. Chen, G.F. Liu, G.S. Huang, X.X. Li, X. Yan, and H.F. Zhou, J. Mater. Sci. Mater. Electron. 28, 13126 (2017).

    Article  Google Scholar 

  18. C.W. Ahn, H.I. Hwang, K.S. Lee, B.M. Jin, S. Park, et al., J. Appl. Phys. 49, 095801 (2010).

    Article  Google Scholar 

  19. R. Singh, K. Kambale, A.R. Kulkarni, and C.S. Harendranath, Mater. Chem. Phys. 138, 905 (2013).

    Article  Google Scholar 

  20. R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, and M. Itoh, Phys. Status Solidi Appl. Mater. 202, R57 (2005).

    Article  Google Scholar 

  21. T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J.G. Zhua, and S.J. Pennycook, Energy Environ. Sci. 10, 528 (2017).

    Article  Google Scholar 

  22. W.L. Zhu, J.L. Zhu, Y. Meng, M.S. Wang, B. Zhu, et al., J. Phys. D Appl. Phys. 44, 505303 (2011).

    Article  Google Scholar 

  23. X.P. Wang, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, and X.J. Wang, J. Am. Chem. Soc. 136, 2905 (2014).

    Article  Google Scholar 

  24. K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, and J.G. Zhu, Adv. Mater. 28, 8519 (2016).

    Article  Google Scholar 

  25. M. Sutapun, C.C. Huang, D.P. Cann, and N. Vittayakorn, J. Alloys Compd. 479, 462 (2009).

    Article  Google Scholar 

  26. H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li, and Z.B. Pei, J. Appl. Phys. 104, 034104 (2008).

    Article  Google Scholar 

  27. H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li, and Z.B. Pei, J. Phys. D Appl. Phys. 41, 085416 (2008).

    Article  Google Scholar 

  28. D. Lin, K.W. Kwok, and H.L.W. Chan, J. Phys. D Appl. Phys. 40, 6778 (2007).

    Article  Google Scholar 

  29. G.Z. Dong, H.Q. Fan, J. Shi, and M. Li, J. Am. Ceram. Soc. 98, 1150 (2014).

    Article  Google Scholar 

  30. J.G. Wu, D.Q. Xiao, and J.G. Zhu, Chem. Rev. 115, 2559 (2015).

    Article  Google Scholar 

  31. H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, and Z.B. Pei, Appl. Phys. Lett. 91, 202907 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yan, X., Liu, G. et al. (K0.5Na0.5)NbO3-Bi(Cu2/3Nb1/3)O3 Lead-free Ceramics: Phase Transition, Enhanced Dielectric and Piezoelectric Properties. J. Electron. Mater. 47, 794–799 (2018). https://doi.org/10.1007/s11664-017-5859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5859-0

Keywords

Navigation