Skip to main content
Log in

A review on piezoelectric ceramics and nanostructures: fundamentals and fabrications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The piezoelectric property was found by Curie brothers in quartz and Rachel salt (1881). This property is a complicated phenomenon that makes it challenging to study. In 1935, the piezoelectric properties of potassium-dehydrogenated phosphate, the first famous piezoelectric material, were determined. Study about these properties of materials was developed by USA, Russia, and Japan during the Second World War, resulting in some piezoelectric materials such as barium titanate (BT) and lead zirconate titanate (PZT) in 1940 and 1950, respectively. Pure and doped PZT families have been widely studied in ceramics and nanostructured forms to enhance their piezoelectric properties. Because of the lead, the PZT materials are harmful to the environment. Therefore, it has been tried to replace it with suitable lead-free materials for practical purposes. The first lead-free piezoelectric material investigated in this respect is BT. However, the piezoelectric properties of BT are not as good as PZT, so a new generation of lead-free piezoelectric materials has been developed. These new lead-free piezoelectric materials are divided into two categories: (1) the lead-free piezoelectric material based on BNT (bismuth niobium titanate) and (2) the lead-free piezoelectric material based on KNN (potassium sodium niobite). The most significant advantage of these materials is that they are environmentally friendly, but their piezoelectric properties are less than PZT. In this chapter review, lead-based and lead-free piezoelectric materials such as PZT, BT, BZT, KNN, BNT, and ZnO are studied. The synthesized methods of piezoelectric materials in ceramic and nanostructure forms are presented. The applications of piezoelectric ceramics and nanostructures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

(Copyright permission received from journal of Applied Surface Science)

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Skoog, D.A., Holler, F.J., Crouch, S.R.: Principles of instrumental analysis, 6th edn. Cengage Learning (2019)

  2. Kochervinskii, V.: Piezoelectricity in crystallizing ferroelectric polymers: poly(vinylidene fluoride) and its copolymers (A review). Crystallogr. Rep. 48, 649–675 (2003)

    Article  CAS  Google Scholar 

  3. Zhang, S., Li, H., Li, M.: Size-dependent piezoelectric coefficient d33 of PbTiO3 nanoparticles. Mater. Lett. 62, 2438–2440 (2008)

    Article  CAS  Google Scholar 

  4. Chu, S.-Y., Chen, T.-Y.: Effects of sintering temperature on the piezoelectric and dielectric properties of Cd additive Sm-modified PbTiO3 ceramics. Mater. Lett. 57, 2780–2786 (2003)

    Article  CAS  Google Scholar 

  5. Chen, T.-Y., Chu, S.-Y., Juang, Y.-D.: Effects of poling field on the dielectric and piezoelectric properties of Cd additive Sm-modified PbTiO3 ceramics. Mater. Lett. 57, 1251–1255 (2003)

    Article  CAS  Google Scholar 

  6. Amarande, L., Miclea, C., Tanasoiu, C.: Effect of excess PbO on the structure and piezoelectric properties of Bi-modified PbTiO3 ceramics. J. Eur. Ceram. Soc. 22, 1269–1275 (2002)

    Article  CAS  Google Scholar 

  7. Dong, Y., Zhou, Z., Liang, R., Dong, X.: Correlation between the grain size and phase structure, electrical properties in BiScO3-PbTiO3-based piezoelectric ceramics. J. Am. Ceram. Soc. 103, 4785–4793 (2020)

    Article  CAS  Google Scholar 

  8. Jaffe, B., Cook, W.R., Jaffe, H.L.: Piezoelectric ceramics. Academic Press (1971)

    Google Scholar 

  9. Bouzid, A., Bourim, E.M., Gabbay, M., Fantozzi, G.: PZT phase diagram determination by measurement of elastic moduli. J. Eur. Ceram. Soc. 25, 3213–3221 (2005)

    Article  CAS  Google Scholar 

  10. Malric, B., Dallaire, S., El-Assal, K.: Crystal structure of plasma-sprayed PZT thick films. Mater. Lett. 5, 246–249 (1987)

    Article  CAS  Google Scholar 

  11. Panda, P., Sahoo, B.: PZT to lead free piezo ceramics: a review. Ferroelectrics 474, 128–143 (2015)

    Article  CAS  Google Scholar 

  12. Ari-Gur, P., Benguigui, L.: X-ray study of the PZT solid solutions near the morphotropic phase transition. Solid State Commun. 15, 1077–1079 (1974)

    Article  CAS  Google Scholar 

  13. Berlincourt, D.A., Cmolik, C., Jaffe, H.: Piezoelectric properties of polycrystalline lead titanate zirconate compositions. Proc. IRE 48, 220–229 (1960)

    Article  CAS  Google Scholar 

  14. Algueró, M., Cheng, B.L., Guiu, F., Reece, M.J., Poole, M., Alford, N.: Degradation of the d33 piezoelectric coefficient for PZT ceramics under static and cyclic compressive loading. J. Eur. Ceram. Soc. 21, 1437–1440 (2001)

    Article  Google Scholar 

  15. Bermejo, R., Grünbichler, H., Kreith, J., Auer, C.: Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: effect of mechanical load and temperature. J. Eur. Ceram. Soc. 30, 705–712 (2010)

    Article  CAS  Google Scholar 

  16. Chen, Y.-T., Sheu, C.-I., Lin, S.-C., Cheng, S.-Y.: Effects of microwave heating on dielectric and piezoelectric properties of PZT ceramic tapes. Ceram. Int. 34, 621–624 (2008)

    Article  CAS  Google Scholar 

  17. Zak, A.K., Majid, W.H.A.: Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol–gel method, in infrared region. Ceram. Int. 37, 753–758 (2011)

    Article  CAS  Google Scholar 

  18. Park, S.-E., Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997)

    Article  CAS  Google Scholar 

  19. Babu, J.B., Madeswaran, G., Dhanasekaran, R., Trinath, K., Rao, A.V., Prasad, N.S., Abisekaraj, I.R.: Ferroelectric properties and transmission response ofPZN-PT single crystals for underwater communication. Defence. Sci. J. 57, 89–93 (2007)

    Article  CAS  Google Scholar 

  20. Kumar, F.J., Lim, L.C., Chilong, C., Tan, M.J.: Morphological aspects of flux grown 0.91PZN-0.09PT crystals. J. Cryst. Growth. 216, 311–31 (2000)

    Article  CAS  Google Scholar 

  21. Mulvihill, M.L., Eek Park, S., Risch, G., Li, Z., Uchino, K., Shrout, T.R.: The role of processing variables in the flux growth of lead zinc niobate-lead titanate relaxor ferroelectric single crystals. Jpn. J. Appl. Phys. 35, 3984–3990 (1996)

    Article  CAS  Google Scholar 

  22. Ye, Z.G., Dong, M., Yamashita, Y.: Thermal stability of the Pb(Zn1/3Nb2/3)O3-PbTiO3 [PZNT91/9] and Pb(Mg1/3Nb2/3)O3-PbTiO3 [PMNT68/32] single crystals. J. Cryst. Growth 211, 247–251 (2000)

    Article  CAS  Google Scholar 

  23. Fang, B.-J., Xu, H.-Q., He, T.-H., Luo, H.-S., Yin, Z.-W.: Growth mechanism and electrical properties of Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 single crystals by a modified Bridgman method. J. Cryst. Growth. 244, 318–326 (2002)

    Article  CAS  Google Scholar 

  24. Guo, Y., Xu, H., Luo, H., Xu, G., Yin, Z.: Growth and electrical properties of Pb(Sc1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary single crystals by a modified Bridgman technique. J. Cryst. Growth 226, 111–116 (2001)

    Article  CAS  Google Scholar 

  25. Yang, Z., Zu, J.: Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting. Energy Convers. Manage. 122, 321–329 (2016)

    Article  CAS  Google Scholar 

  26. Wong, M.F., Heng, X., Zeng, K.: Domain characterization of Pb(Zn[sub 1/3]Nb[sub 2/3])O[sub 3] - (6%–7%)PbTiO[sub 3] single crystals using scanning electron acoustic microscopy. J. Appl. Phys. 104, 074103–074108 (2008)

    Article  Google Scholar 

  27. Liu, T., Lynch, C.S.: Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: measurements and modeling. Acta Mater. 51, 407–416 (2003)

    Article  CAS  Google Scholar 

  28. Harada, K., Shimanuki, S., Kobayashi, T., Saitoh, S., Yamashita, Y.: Crystal growth and electrical properties of Pb((Zn1/3Nb2/3)0.91Ti0.09)O3 single crystals produced by solution Bridgman method. J. Am. Ceramic Soc. 81, 2785–2788 (1998)

    Article  CAS  Google Scholar 

  29. Park, J.-S., Lee, J.-K., Hong, K.S.: The effect of alkali niobate addition on the phase stability and dielectric properties of Pb(Zn[sub 1/3]Nb[sub 2/3])O[sub 3] based ceramic. J. Appl. Phys. 101, 114101–114107 (2007)

    Article  Google Scholar 

  30. Lima-Silva, J.J., Guedes, I., Mendes Filho, J., Ayala, A.P., Lente, M.H., Eiras, J.A., Garcia, D.: Phase diagram of the relaxor (1–x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 investigated by dielectric and Raman spectroscopies. Solid State Commun. 131, 111–114 (2004)

    Article  CAS  Google Scholar 

  31. Ming, C., Yang, T., Luan, K., Chen, L., Wang, L., Zeng, J., Li, Y., Zhang, W., Chen, L.-Q.: Microstructural effects on effective piezoelectric responses of textured PMN-PT ceramics. Acta Mater. 145, 62–70 (2018)

    Article  CAS  Google Scholar 

  32. Wang, J., Wang, S., Li, X., Li, L., Liu, Z., Zhang, J., Wang, Y.: High piezoelectricity and low strain hysteresis in PMN–PT-based piezoelectric ceramics. J. Adv. Ceram. 12, 792–802 (2023)

    Article  CAS  Google Scholar 

  33. Bing, Y., Guo, R., Bhalla, A.: Optical properties of relaxor ferroelectric crystal: Pb (Zn1/3Nb2/3) O3-4.5% PbTiO3. Ferroelectrics 242, 1–11 (2000)

  34. Chan, K.Y., Tsang, W.S., Mak, C.L., Wong, K.H., Hui, P.M.: Effects of composition of PbTiO_{3} on optical properties of (1–x)PbMg_{1/3}Nb_{2/3}O_{3}-xPbTiO_{3} thin films. Phys. Rev. B 69, 144111 (2004)

    Article  Google Scholar 

  35. Zhang, X.Y., Zhao, X., Lai, C.W., Wang, J., Tang, X.G., Dai, J.Y.: Synthesis and piezoresponse of highly ordered Pb(Zr[sub 0.53]Ti[sub 0.47])O[sub 3] nanowire arrays. App. Physics Lett. 85, 4190–4192 (2004)

    Article  CAS  Google Scholar 

  36. Singh, A.K., Pandey, D.: Evidence for M_{B} and M_{C} phases in the morphotropic phase boundary region of (1–x)[Pb(Mg_{1/3}Nb_{2/3})O_{3}]-xPbTiO_{3}: a Rietveld study. Phys. Rev. B 67, 064102 (2003)

    Article  Google Scholar 

  37. Tong, X.L., Lin, K., Lv, D.J., Yang, M.H., Liu, Z.X., Zhang, D.S.: Optical properties of PMN–PT thin films prepared using pulsed laser deposition. Appl. Surf. Sci. 255, 7995–7998 (2009)

    Article  CAS  Google Scholar 

  38. Ghasemifard, M., Hosseini, S.M., Khorrami, G.H.: Synthesis and structure of PMN–PT ceramic nanopowder free from pyrochlore phase. Ceram. Int. 35, 2899–2905 (2009)

    Article  CAS  Google Scholar 

  39. Zak, A.K., MAJID, W., Darroudi, M.: Synthesis and characterization of sol-gel derived single-phase PZT nanoparticles in aqueous polyol solution. J. Optoelectron. Adavnced Mat. 12, 1714–1719 (2010)

    CAS  Google Scholar 

  40. Shrout, T.R., Chang, Z.P., Kim, N., Markgraf, S.: Dielectric behavior of single crystal near the lead magnesium niobate-lead titanate (1–x)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 morphotropic phase boundary. Ferroelectr. Lett. Sect. 12, 63–69 (1990)

    Article  CAS  Google Scholar 

  41. Hindrichsen, C.G., Lou-Møller, R., Hansen, K., Thomsen, E.V.: Advantages of PZT thick film for MEMS sensors. Sens. Actuators, A 163, 9–14 (2010)

    Article  CAS  Google Scholar 

  42. Lee, K.B., Desu, S.B.: Improvement by surface modification of Ir electrode-barrier for Pb(Zr, Ti)O3-based high-density nonvolatile ferroelectric memories. Curr. Appl. Phys. 1, 379–384 (2001)

    Article  Google Scholar 

  43. Regtien, P.P., Dertien, E.: Sensors for mechatronics. Elsevier (2018)

  44. Schreiter, M., Gabl, R., Pitzer, D., Primig, R., Wersing, W.: Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators. J. Eur. Ceram. Soc. 24, 1589–1592 (2004)

    Article  CAS  Google Scholar 

  45. Soeren, H., Steffen, D., Stefan, S., Ralf, L., Peter, H., Bertram, S.: A new device with PZT ultrasonic transducers in MEMS technology. J. Phys: Conf. Ser. 34, 475 (2006)

    Google Scholar 

  46. Zhigalina, O., Burmistrova, P., Vasiliev, A., Roddatis, V., Sigov, A., Vorotilov, K.: Microstructure of PZT capacitor structures. Ferroelectrics 286, 311–320 (2003)

    Article  CAS  Google Scholar 

  47. Li, Y., Moon, K.-S., Wong, C.P.: Electronics without lead. Science 308, 1419–1420 (2005)

    Article  CAS  Google Scholar 

  48. Maeder, M.D., Damjanovic, D., Setter, N.: Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)

    Article  CAS  Google Scholar 

  49. Shrout, T., Zhang, S.: Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007)

    Article  Google Scholar 

  50. Hiruma, Y., Nagata, H., Takenaka, T.: Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112–084118 (2009)

    Article  Google Scholar 

  51. Takenaka, T., Nagata, H.: Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693–2700 (2005)

    Article  CAS  Google Scholar 

  52. von Hippel, A.: Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 22, 221–237 (1950)

    Article  Google Scholar 

  53. Feng, J., Huang, R., Liang, Z., Du, Z., Dai, Y., Wu, J., Lin, H.-T.: The effect of B site doping of Nb5+ and aging process on the properties of BNKT-BT lead-free piezoelectric ceramics. Ceram. Int. 48, 2355–2361 (2022)

    Article  CAS  Google Scholar 

  54. Berlincourt, D., Jaffe, H.: Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys. Rev. 111, 143–148 (1958)

    Article  CAS  Google Scholar 

  55. Tkacz-Śmiech, K., Koleżyński, A., Ptak, W.S.: Crystal-chemical aspects of phase transitions in barium titanate. Solid State Commun. 127, 557–562 (2003)

    Article  Google Scholar 

  56. Forsbergh, P.W., Jr.: Domain structures and phase transitions in barium titanate. Phys. Rev. 76, 1187–1201 (1949)

    Article  CAS  Google Scholar 

  57. Kwei, G.H., Lawson, A.C., Billinge, S.J.L.: Structures of the ferroelectric phases of barium titanate. J. Mater. Chem. 97, 2368–2377 (1993)

    CAS  Google Scholar 

  58. Bak, W., Starzyk, F., Kajtoch, C., Nogas-Cwikiel, E.: Elevated temperature induced dispersion phenomena in Ba1-xNaxTi1-xNbxO3. Arch. Mat. Sci. Eng. 29, 5–9 (2008)

    Google Scholar 

  59. Wada, S., Suzuki, S., Noma, T., Suzuki, T., Osada, M., Kakihana, M., Park, S.-E., Cross, L.E., Shrout, T.R.: Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn. J. Appl. Phys. 38, 5505–5511 (1999)

    Article  CAS  Google Scholar 

  60. Bak, W., Kajtoch, C., Starzyk, F., Zmija, J.: Evolution of electric polarization in paraelectric phase of BaTiO3. Arch. Mat. Sci. Eng. 33, 79–82 (2008)

    Google Scholar 

  61. Ganeev, R.A., Suzuki, M., Baba, M., Ichihara, M., Kuroda, H.: Low- and high-order nonlinear optical properties of BaTiO3 and SrTiO3 nanoparticles. J. Optical. Soc. Am. B 25, 325–333 (2008)

    Article  CAS  Google Scholar 

  62. Kuwabara, M., Matsuda, H., Hamamoto, K.: Giant piezoresistive effects in single grain boundaries of semiconducting barium titanate ceramics*. J. Electroceram. 4, 99–103 (1999)

    Article  CAS  Google Scholar 

  63. Nyutu, E.K., Chen, C.-H., Dutta, P.K., Suib, S.L.: Effect of microwave frequency on hydrothermal synthesis of nanocrystalline tetragonal barium titanate. J. Mat. Chem. C 112, 9659–9667 (2008)

    CAS  Google Scholar 

  64. Lv, X., Zhang, X.-X., Wu, J.: Nano-domains in lead-free piezoceramics: a review. J. Mat. Chem. A 8, 10026–10073 (2020)

    Article  CAS  Google Scholar 

  65. Tang, P., Towner, D., Hamano, T., Meier, A., Wessels, B.: Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Opt. Express 12, 5962–5967 (2004)

    Article  CAS  Google Scholar 

  66. Xiaobing, R.: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004)

    Article  Google Scholar 

  67. Liu, J.J., Zhou, Y.C., Soh, A.K., Li, J.Y.: Engineering domain configurations for enhanced piezoelectricity in barium titanate single crystals. Appl. Phys. Lett. 88, 032904–32903 (2006)

    Article  Google Scholar 

  68. Wada, S., Yako, K., Kakemoto, H., Tsurumi, T., Kiguchi, T.: Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. 98, 014109–14107 (2005)

    Article  Google Scholar 

  69. Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Günter, P., Garrett, M.H., Rytz, D., Zhu, Y., Wu, X.: Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO_{3} crystals. Phys. Rev. B 50, 5941–5949 (1994)

    Article  CAS  Google Scholar 

  70. Wada, S., Kakemoto, H., Tsurumi, T.: Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering. Mater. Trans. 45, 178–187 (2004)

    Article  CAS  Google Scholar 

  71. Desu, S.B., Payne, D.A.: Interfacial segregation in perovskites: i, theory. J. Am. Ceram. Soc. 73, 3391–3397 (1990)

    Article  CAS  Google Scholar 

  72. Desu, S.B., Payne, D.A.: Interfacial segregation in perovskites: ii, experimental evidence. J. Am. Ceram. Soc. 73, 3398–3406 (1990)

    Article  CAS  Google Scholar 

  73. Desu, S.B., Payne, D.A.: Interfacial segregation in perovskites: iii, microstructure and electrical properties. J. Am. Ceram. Soc. 73, 3407–3415 (1990)

    Article  CAS  Google Scholar 

  74. Tang, X.G., Chew, K.H., Chan, H.L.W.: Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater. 52, 5177–5183 (2004)

    Article  CAS  Google Scholar 

  75. Zhu, M., Li, S., Zhang, H., Gao, J., Kwok, K., Jia, Y., Kong, L.-B., Zhou, W., Peng, B.: Diffused phase transition boosted dye degradation with Ba (ZrxTi1− x) O3 solid solutions through piezoelectric effect. Nano Energy 89, 106474 (2021)

    Article  CAS  Google Scholar 

  76. Aghayan, M., Zak, A.K., Behdani, M., Hashim, A.M.: Sol–gel combustion synthesis of Zr-doped BaTiO3 nanopowders and ceramics: dielectric and ferroelectric studies. Ceram. Int. 40, 16141–16146 (2014)

    Article  CAS  Google Scholar 

  77. Mahajan, S., Thakur, O., Prakash, C., Sreenivas, K.: Effect of Zr on dielectric, ferroelectric and impedance properties of BaTiO<sub>3</sub> ceramic. Bull. Mater. Sci. 34, 1483–1489 (2011)

    Article  CAS  Google Scholar 

  78. Rehrig, P.W., Park, S.-E., Trolier-McKinstry, S., Messing, G.L., Jones, B., Shrout, T.R.: Piezoelectric properties of zirconium-doped barium titanate single crystals grown by templated grain growth. J. Appl. Phys. 86, 1657–1661 (1999)

    Article  CAS  Google Scholar 

  79. Jaiban, P., Tongtham, M., Wannasut, P., Pisitpipathsin, N., Namsar, O., Chanlek, N., Pojprapai, S., Yimnirun, R., Guo, R., Bhalla, A.S.: Phase characteristics, microstructure, and electrical properties of (1–x) BaZr0. 2Ti0. 8O3-(x)(Ba0. 7Ca0. 3) 0.985 La0. 01TiO3 ceramics. Ceram. Int. 45, 17502–17511 (2019)

    Article  Google Scholar 

  80. Buscaglia, M.T., Buscaglia, V., Viviani, M., Nanni, P., Hanuskova, M.: Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 20, 1997–2007 (2000)

    Article  CAS  Google Scholar 

  81. Boulos, M., Guillemet-Fritsch, S., Valdez-Nava, Z., Durand, B.: Lanthanum doped barium titanate materials with optimized properties for high capacity materials application. Silic. Indus. 74, 15–22 (2009)

    CAS  Google Scholar 

  82. West, A.R., Adams, T.B., Morrison, F.D., Sinclair, D.C.: Novel high capacitance materials:- BaTiO3: La and CaCu3Ti4O12. J. Eur. Ceram. Soc. 24, 1439–1448 (2004)

    Article  CAS  Google Scholar 

  83. Vijatović, M.M., Stojanović, B.D., Bobić, J.D., Ramoska, T., Bowen, P.: Properties of lanthanum doped BaTiO3 produced from nanopowders. Ceram. Int. 36, 1817–1824 (2010)

    Article  Google Scholar 

  84. Petrović, M.M.V., Bobić, J.D., Ramoška, T., Banys, J., Stojanović, B.D.: Electrical properties of lanthanum doped barium titanate ceramics. Mater. Charact. 62, 1000–1006 (2011)

    Article  Google Scholar 

  85. Khorrami, G.H., Kompany, A., Zak, A.K.: Structural and optical properties of KNN nanocubes synthesized by a green route using gelatin. Funct. Mater. Lett. 8, 1550030 (2015)

    Article  CAS  Google Scholar 

  86. Khorrami, G.H., Kompany, A., Zak, A.K.: Structural and optical properties of (K, Na) NbO3 nanoparticles synthesized by a modified sol–gel method using starch media. Adv. Powder Technol. 26, 113–118 (2015)

    Article  Google Scholar 

  87. Khorrami, G.H., Kompany, A., Zak, A.K.: The effects of different polymerization agents on structural and optical properties of (K 0.5 Na 0.5) NbO 3 nanopowders synthesized by a facile green route. Modern Physics Letters B. 28, 1450224 (2014)

    Article  CAS  Google Scholar 

  88. Zhang, S., Jiang, F., Qu, G., Lin, C.: Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol–gel and surfactant-templated methods. Mater. Lett. 62, 2225–2228 (2008)

    Article  CAS  Google Scholar 

  89. Ahtee, M., Glazer, A.M.: Lattice parameters and tilted octahedra in sodium-potassium niobate solid solutions. Acta Crystallogr. A 32, 434–446 (1976)

    Article  Google Scholar 

  90. Ahtee, M., Hewat, A.W.: Structural phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction. Acta Crystallogr. A 34, 309–317 (1978)

    Article  Google Scholar 

  91. Tennery, V.J., Hang, K.W.: Thermal and X-ray diffraction studies of the NaNbO[sub 3][Single Bond]KNbO[sub 3] System. J. Appl. Phys. 39, 4749–4753 (1968)

    Article  CAS  Google Scholar 

  92. Shirane, G., Newnham, R., Pepinsky, R.: Dielectric properties and phase transitions of NaNbO_{3} and (Na, K)NbO_{3}. Phys. Rev. 96, 581–588 (1954)

    Article  CAS  Google Scholar 

  93. Egerton, L., Dillon, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassium—sodium niobate. J. Am. Ceram. Soc. 42, 438–442 (1959)

    Article  CAS  Google Scholar 

  94. Kumar, P., Pattanaik, M.: Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB. Ceram. Int. 39, 65–69 (2013)

    Article  CAS  Google Scholar 

  95. Mgbemere, H.E., Herber, R.-P., Schneider, G.A.: Investigation of the dielectric and piezoelectric properties of potassium sodium niobate ceramics close to the phase boundary at (K0.35Na0.65)NbO3 and partial substitutions with lithium and antimony. J. Europ. Ceram. Soc. 29, 3273–3278 (2009)

    Article  CAS  Google Scholar 

  96. Jaeger, R.E., Egerton, L.: Hot Pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  CAS  Google Scholar 

  97. Sen, C., Alkan, B., Akin, I., Yucel, O., Sahin, F.C., Goller, G.: Microstructure and ferroelectric properties of spark plasma sintered Li substituted K0.5Na0.5NbO3 ceramics. J. Ceram. Soc Japan. 119, 355–361 (2011)

    Article  CAS  Google Scholar 

  98. Wang, R., Xie, R., Sekiya, T., Shimojo, Y.: Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull. 39, 1709–1715 (2004)

    Article  CAS  Google Scholar 

  99. Wang, K., Li, J.-F.: (K, Na)NbO<sub>3</sub>-based lead-free piezoceramics: phase transition, sintering and property enhancement. J. Adv. Ceram. 1, 24–37 (2012)

    Article  CAS  Google Scholar 

  100. Park, H.-Y., Choi, J.-Y., Choi, M.-K., Cho, K.-H., Nahm, S., Lee, H.-G., Kang, H.-W.: Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91, 2374–2377 (2008)

    Article  CAS  Google Scholar 

  101. Lin, Y., Liu, Y., Sodano, H.A.: Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays. Appl. Phys. Lett. 95, 122901–122903 (2009)

    Article  Google Scholar 

  102. Hao, J., Xu, Z., Chu, R., Zhang, Y., Li, G., Yin, Q.: Effects of K4CuNb8O23 on the structure and electrical properties of lead-free 0.94(Na0.5K0.5)NbO3–0.06LiNbO3 ceramics. Mat. Res. Bull. 44, 1963–1967 (2009)

    Article  CAS  Google Scholar 

  103. Fisher, J.G., Benčan, A., Godnjavec, J., Kosec, M.: Growth behaviour of potassium sodium niobate single crystals grown by solid-state crystal growth using K4CuNb8O23 as a sintering aid. J. Eur. Ceram. Soc. 28, 1657–1663 (2008)

    Article  CAS  Google Scholar 

  104. Liu, Y., Chu, R., Xu, Z., Lv, H., Wu, L., Yang, Y., Li, G.: Effects of K4CuNb8O23 on phase structure and electrical properties of K0.5Na0.5NbO3–LiSbO3 lead-free piezoceramics. Physica B: Condensed Matter. 407, 2573–2577 (2012)

    Article  CAS  Google Scholar 

  105. Panda, P.: Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009)

    Article  CAS  Google Scholar 

  106. Bernard, J., Benčan, A., Rojac, T., Holc, J., Malič, B., Kosec, M.: Low-temperature sintering of K0.5Na0.5NbO3 ceramics. J. Am. Ceram. Soc. 91, 2409–2411 (2008)

    Article  CAS  Google Scholar 

  107. Matsubara, M., Kikuta, K., Hirano, S.: Piezoelectric properties of (K[sub 0.5]Na[sub 0.5])(Nb[sub 1–x]Ta[sub x])O[sub 3] - K[sub 5.4]CuTa[sub 10]O[sub 29] ceramics. J. App. Physics. 97, 114105–114107 (2005)

    Article  Google Scholar 

  108. Maeda, T., Hemsel, T., Morita, T.: Piezoelectric properties of Li-doped (K0. 48Na0. 52) NbO3 ceramics synthesized using hydrothermally-derived KNbO3 and NaNbO3 fine powders. Japan. J. Appl. Phys. 51, 09MD08 (2012)

  109. Zhang, S., Xia, R., Shrout, T.R.: Modified (K[sub 0.5]Na[sub 0.5])NbO[sub 3] based lead-free piezoelectrics with broad temperature usage range. App. Physics Lett. 91, 132913–132913 (2007)

    Article  Google Scholar 

  110. Guo, Y., Kakimoto, K.-I., Ohsato, H.: Dielectric and piezoelectric properties of lead-free (Na05K05)NbO3–SrTiO3 ceramics. Solid State Commun. 129, 279–284 (2004)

    Article  CAS  Google Scholar 

  111. Du, J., Wang, J.-F., Zheng, L.-M., Wang, C.-M., Qi, P., Zang, G.-Z.: KNN based lead-free piezoceramics with improved thermal stability. Chin. Phys. Lett. 26, 027701 (2009)

    Article  Google Scholar 

  112. Gusakova, L.G., Kisel, N.G., Kuzenko, D.V., Spiridonov, N.A.: Modified potassium sodium niobate based lead free piezoceramics. Functional Materials 17, 528–532 (2010)

    CAS  Google Scholar 

  113. Kanno, I., Ichida, T., Adachi, K., Kotera, H., Shibata, K., Mishima, T.: Power-generation performance of lead-free (K, Na)NbO3 piezoelectric thin-film energy harvesters. Sens. Actuators, A 179, 132–136 (2012)

    Article  CAS  Google Scholar 

  114. Lingwal, V., Semwal, B., Panwar, N.: Dielectric properties of Na<sub>1-<i>x </sub>K<sub><i>x </sub>NbO<sub>3</sub> in orthorhombic phase. Bull. Mater. Sci. 26, 619–625 (2003)

    Article  CAS  Google Scholar 

  115. López, R., González, F., Cruz, M.P., Villafuerte-Castrejon, M.E.: Piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 ceramics synthesized by spray drying method. Mat. Res. Bull. 46, 70–74 (2011)

    Article  Google Scholar 

  116. Bassiri-Gharb, N., Fujii, I., Hong, E., Trolier-McKinstry, S., Taylor, D., Damjanovic, D.: Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 49–67 (2007)

    Article  Google Scholar 

  117. Wang, Z., Zhang, R., Sun, E., Cao, W.: Contributions of domain wall motion to complex electromechanical coefficients of 0.62Pb(Mg[sub 1/3]Nb[sub 2/3])O[sub 3]–0.38PbTiO[sub 3] crystals. J. App. Physics. 107, 014110–014114 (2010)

    Article  Google Scholar 

  118. Arlt, G., Hennings, D., de With, G.: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985)

    Article  CAS  Google Scholar 

  119. Park, H.-Y., Ahn, C.-W., Song, H.-C., Lee, J.-H., Nahm, S., Uchino, K., Lee, H.-G., Lee, H.-J.: Microstructure and piezoelectric properties of 0.95(Na[sub 0.5]K[sub 0.5])NbO[sub 3]–0.05BaTiO[sub 3] ceramics. App. Physics Lett. 89, 062906–062903 (2006)

    Article  Google Scholar 

  120. Jeong, Y.-H., Lee, S.-H., Yoo, J.-H., Park, C.Y.: Voltage gain characteristics of piezoelectric transformer using PbTiO3 system ceramics. Sens. Actuators, A 77, 126–130 (1999)

    Article  CAS  Google Scholar 

  121. Seabaugh, M.M., Cheney, G.L., Hasinska, K., Azad, A.-M., Sabolsky, E.M., Swartz, S.L., Dawson, W.J.: Development of a templated grain growth system for texturing piezoelectric ceramics. J. Intell. Mater. Syst. Struct. 15, 209–214 (2004)

    Article  CAS  Google Scholar 

  122. Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M.: Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  123. Du, H., Li, Z., Tang, F., Qu, S., Pei, Z., Zhou, W.: Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering. Mat. Sci. Eng. B. 131, 83–87 (2006)

    Article  CAS  Google Scholar 

  124. Malic, B., Bernard, J., Holc, J., Jenko, D., Kosec, M.: Alkaline-earth doping in (K, Na)NbO3 based piezoceramics. J. Eur. Ceram. Soc. 25, 2707–2711 (2005)

    Article  CAS  Google Scholar 

  125. Chang, Y., Yang, Z.-P., Ma, D., Liu, Z., Wang, Z.: Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K[sub 0.458]Na[sub 0.542])[sub 0.96]Li[sub 0.04]] NbO[sub 3] lead-free piezoelectric ceramics. J. App. Physics. 104, 024109–024108 (2008)

    Article  Google Scholar 

  126. Dai, Y., Zhang, X., Zhou, G.: Phase transitional behavior in K[sub 0.5]Na[sub 0.5]NbO[sub 3]–LiTaO[sub 3] ceramics. App. Physics Lett. 90, 262903–262903 (2007)

    Article  Google Scholar 

  127. Lin, D., Kwok, K.W., Chan, H.L.W.: Microstructure, phase transition, and electrical properties of (K[sub 0.5]Na[sub 0.5])[sub 1–x]Li[sub x](Nb[sub 1 - y]Ta[sub y])O[sub 3] lead-free piezoelectric ceramics. J. App. Physics. 102, 034102–034107 (2007)

    Article  Google Scholar 

  128. Xu, L., Chen, F., Jin, F., Lan, D., Qu, L., Zhang, K., Zhang, Z., Gao, G., Huang, H., Li, T.: Tuning electrical properties and phase transitions through strain engineering in lead-free ferroelectric K0. 5Na0. 5NbO3-LiTaO3-CaZrO3 thin films. Appl. Phys. Lett. 115. (2019)

  129. Lin, D., Kwok, K.W., Lam, K.H., Chan, H.L.W.: Structure and electrical properties of K[sub 0.5]Na[sub 0.5]NbO[sub 3]–LiSbO[sub 3] lead-free piezoelectric ceramics. J. App. Physics. 101, 074111–074116 (2007)

    Article  Google Scholar 

  130. Wu, J., Xiao, D., Wang, Y., Zhu, J., Yu, P.: Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95(K[sub x]Na[sub 1–x])NbO[sub 3] - 0.05LiSbO[sub 3] lead-free ceramics. J. App. Physics. 103, 024102–024104 (2008)

    Article  Google Scholar 

  131. Guo, Y., Kakimoto, K.-I., Ohsato, H.: Phase transitional behavior and piezoelectric properties of (Na[sub 0.5]K[sub 0.5])NbO[sub 3]–LiNbO[sub 3] ceramics. App. Physics Lett. 85, 4121–4123 (2004)

    Article  CAS  Google Scholar 

  132. Lv, Y.G., Wang, C.L., Zhang, J.L., Zhao, M.L., Li, M.K., Wang, H.C.: Modified (K0.5Na0.5)(Nb0.9Ta0.1)O3 ceramics with high Qm. Materials Lett. 62, 3425–3427 (2008)

    Article  CAS  Google Scholar 

  133. Niu, X.K., Zhang, J.L., Wu, L., Zheng, P., Zhao, M.L., Wang, C.L.: Crystalline structural phase boundaries in (K, Na, Li)NbO 3 ceramics. Solid State Commun. 146, 395–398 (2008)

    Article  CAS  Google Scholar 

  134. Zhao, P., Zhang, B.-P., Li, J.-F.: High piezoelectric d[sub 33] coefficient in Li-modified lead-free (Na, K)NbO[sub 3] ceramics sintered at optimal temperature. Appl. Phys. Lett. 90, 242909–242903 (2007)

    Article  Google Scholar 

  135. Matsubara, M., Yamaguchi, T., Sakamoto, W., Kikuta, K., Yogo, T., Hirano, S.: Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta) O3 ceramics. J. Am. Ceram. Soc. 88, 1190–1196 (2005)

    Article  CAS  Google Scholar 

  136. Saito, Y., Takao, H.: High performance lead-free piezoelectric ceramics in the (K, Na) NbO3-LiTaO3 solid solution system. Ferroelectrics 338, 17–32 (2006)

    Article  CAS  Google Scholar 

  137. Yang, Z., Chang, Y., Liu, B., Wei, L.: Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3–LiSbO3 ceramics. Mat. Sci. Eng. A 432, 292–298 (2006)

    Article  Google Scholar 

  138. Xiao, D., Zhu, J.: Effect of doping ions on the properties of KNN-based lead-free piezoelectric ceramics. Ferroelectrics 404, 10–18 (2010)

    Article  CAS  Google Scholar 

  139. Li, T., Dai, S., Xu, L., Liu, Y., Zhuo, H., Wang, K., Wang, H., Chen, F.: Electrical property and phase transition analysis of KNN-based lead-free ferroelectric films. Mat. Res. Express. 9, 056403 (2022)

    Article  Google Scholar 

  140. Chang, Y., Yang, Z., Wei, L., Liu, B.: Effects of AETiO3 additions on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3 ceramics. Mat. Sci. Eng: A. 437, 301–305 (2006)

    Article  Google Scholar 

  141. Kosec, M., Bobnar, V., Hrovat, M., Bernard, J., Malic, B., Holc, J.: New lead-free relaxors based on the K~ 0~.~ 5Na~ 0~.~ 5NbO~ 3-SrTiO~ 3 solid solution. J. Mat. Res. 19, 1849–1854 (2004)

    Article  CAS  Google Scholar 

  142. Kroupa, J., Petzelt, J., Malic, B., Kosec, M.: Electro-optic properties of KNN–STO lead-free ceramics. J. Phys. D Appl. Phys. 38, 679 (2005)

    Article  CAS  Google Scholar 

  143. Wang, R., Xie, R.J., Hanada, K., Matsusaki, K., Bando, H., Itoh, M.: Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. physica status solidi (a) 202, R57-R59 (2005)

  144. Chang, R.C., Chu, S.Y., Lin, Y.F., Hong, C.S., Wong, Y.P.: An investigation of (Na< sub> 0.5</sub> K< sub> 0.5</sub>) NbO< sub> 3</sub>–CaTiO< sub> 3</sub> based lead-free ceramics and surface acoustic wave devices. J. Europ. Ceram. Soc. 27:4453–4460 (2007)

  145. Park, H.Y., Cho, K.H., Paik, D.S., Nahm, S., Lee, H.G., Kim, D.H.: Microstructure and piezoelectric properties of lead-free (1–x)(NaK) NbO-xCaTiO ceramics. J. Appl. Phys. 102, 124101 (2007)

    Article  Google Scholar 

  146. Guo, Y., Kakimoto, K., Ohsato, H. (2004) Ferroelectric-relaxor behavior of (Na< sub> 0.5</sub> K< sub> 0.5</sub>) NbO< sub> 3</sub>-based ceramics. Journal of Physics and Chemistry of Solids 65, 1831–1835 (2004)

  147. Chang, R.C., Chu, S.Y., Lin, Y.F., Hong, C.S., Kao, P.C., Lu, C.H.: The effects of sintering temperature on the properties of (Na< sub> 0.5</sub> K< sub> 0.5</sub>) NbO< sub> 3</sub>–CaTiO< sub> 3</sub> based lead-free ceramics. Sensors and Actuators A: Physical 138, 355–360 (2007)

  148. Kusumoto, K.: Dielectric and piezoelectric properties of KNbO3-NaNbO3-LiNbO3-SrTiO3 ceramics. Jpn. J. Appl. Phys. 45, 7440 (2006)

    Article  CAS  Google Scholar 

  149. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  CAS  Google Scholar 

  150. Wang, Z.L.: Nanopiezotronics. Adv. Mater. 19, 889–892 (2007)

    Article  CAS  Google Scholar 

  151. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech 23, 1294–1301 (2005)

    Article  CAS  Google Scholar 

  152. Lin, X., He, X.B., Yang, T.Z., Guo, W., Shi, D.X., Gao, H.J., Ma, D.D.D., Lee, S.T., Liu, F., Xie, X.C.: Intrinsic current-voltage properties of nanowires with four-probe scanning tunneling microscopy: a conductance transition of ZnO nanowire. Appl. Phys. Lett. 89, 043103–043103 (2006)

    Article  Google Scholar 

  153. He, J.H., Hsin, C.L., Liu, J., Chen, L.J., Wang, Z.L.: Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19, 781–784 (2007)

    Article  CAS  Google Scholar 

  154. Zhang, Y., Yu, K., Jiang, D., Zhu, Z., Geng, H., Luo, L.: Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005)

    Article  CAS  Google Scholar 

  155. Cheng, M.M.-C., Cuda, G., Bunimovich, Y.L., Gaspari, M., Heath, J.R., Hill, H.D., Mirkin, C.A., Nijdam, A.J., Terracciano, R., Thundat, T., Ferrari, M.: Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10, 11–19 (2006)

    Article  CAS  Google Scholar 

  156. Zhou, D., Gu, H., Hu, Y., Tian, H., Wang, Z., Qian, Z., Wang, Y.: Synthesis, characterization and ferroelectric properties of lead-free K[sub 0.5]Na[sub 0.5]NbO[sub 3] nanotube arrays. J. App. Physics. 109, 114104–114105 (2011)

    Article  Google Scholar 

  157. Hu, C.J., Lin, Y.H., Tang, C.W., Tsai, M.Y., Hsu, W.K., Kuo, H.F.: ZnO-coated carbon nanotubes: flexible piezoelectric generators. Adv. Mater. 23, 2941–2945 (2011)

    Article  CAS  Google Scholar 

  158. Mason, C.: Zinc Oxide coated Carbon Nanotubes as Piezoelectric Nanogenerators. School of Materials Science and Engineering (2009)

  159. Qiu, Y., Zhang, H., Hu, L., Yang, D., Wang, L., Wang, B., Ji, J., Liu, G., Liu, X., Lin, J., Li, F., Han, S.: Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale 4, 6568–6573 (2012)

    Article  CAS  Google Scholar 

  160. Water, W., Fang, T.-H., Hsiao, Y.-J., Ji, L.-W., Tsai, J.-H., Lee, C.-C.: Structural, electromechanical and optical characterization of ZnO nanorods. Nanosci. Nanotechnol. Lett. 3, 468–471 (2011)

    Article  CAS  Google Scholar 

  161. Lin, H.-B., Cao, M.-S., Zhao, Q.-L., Shi, X.-L., Wang, D.-W., Wang, F.-C.: Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers. Scripta Mater. 59, 780–783 (2008)

    Article  CAS  Google Scholar 

  162. Wang, D.-W., Cao, M.-S., Yuan, J., Zhao, Q.-L., Li, H.-B., Lin, H.-B., Zhang, D.-Q.: Piezoelectric, ferroelectric and mechanical properties of lead zirconate titanate/zinc oxide nanowhisker ceramics. J. Mater. Sci.: Mater. Electron. 22, 1393–1399 (2011)

    CAS  Google Scholar 

  163. Xu, S., Hansen, B.J., Wang, Z.L.: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature 1, 93 (2010)

    Google Scholar 

  164. Xu, S., Poirier, G., Yao, N.: PMN-PT nanowires with a very high piezoelectric constant. Nano Lett. 12, 2238–2242 (2012)

    Article  CAS  Google Scholar 

  165. Bortolani, F., Dorey, R.A.: Molten salt synthesis of PZT powder for direct write inks. J. Eur. Ceram. Soc. 30, 2073–2079 (2010)

    Article  CAS  Google Scholar 

  166. Ghasemifard, M., Hosseini, S., Khorsand Zak, A., Khorrami, G.H.: Microstructural and optical characterization of PZT nanopowder prepared at low temperature. Physica E 41, 418–422 (2009)

    Article  CAS  Google Scholar 

  167. Kim, S.H., Komarneni, S.: Study on the preferred orientations of nearly cubic PZT particles synthesized by hydrothermal methods using TiCl3 reagent. Ceram. Int. 37, 3211–3216 (2011)

    Article  CAS  Google Scholar 

  168. Sabouri, Z., Oskuee, R.K., Sabouri, S., Moghaddas, S.S., Samarghandian, S., SajidAbdulabbas, H., Darroudi, M.: Phytoextract-mediated synthesis of Ag-doped ZnO–MgO–CaO nanocomposite using Ocimum Basilicum L seeds extract as a highly efficient photocatalyst and evaluation of their biological effects. Ceram. Int. 49, 20989–20997 (2023)

    Article  CAS  Google Scholar 

  169. Sabouri, Z., Sabouri, M., Amiri, M.S., Khatami, M., Darroudi, M.: Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater. Technol. 37, 555–568 (2022)

    Article  CAS  Google Scholar 

  170. Sabouri, Z., Sabouri, S., Moghaddas, S.S., Mostafapour, A., Amiri, M.S., Darroudi, M.: Facile green synthesis of Ag-doped ZnO/CaO nanocomposites with Caccinia macranthera seed extract and assessment of their cytotoxicity, antibacterial, and photocatalytic activity. Biop. Biosystems Eng. 45, 1799–1809 (2022)

    Article  CAS  Google Scholar 

  171. Hollenstein, E., Damjanovic, D., Setter, N.: Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J. Eur. Ceram. Soc. 27, 4093–4097 (2007)

    Article  CAS  Google Scholar 

  172. Wongsaenmai, S., Ananta, S., Unruan, M., Yimnirun, R.: Effects of uniaxial stress on dielectric properties of lithium modified potassium sodium niobate ceramics. Physica B 406, 2862–2864 (2011)

    Article  CAS  Google Scholar 

  173. Tan, C.K.I., Yao, K., Goh, P.C., Ma, J.: 0. 94 (K 0. 5 Na 0. 5) NbO 3–0. 06 LiNbO 3 piezoelectric ceramics prepared from the solid state reaction modified with polyvinylpyrrolidone(PVP) of different molecular weights. Ceram. Int. 38, 2513–2519 (2012)

    Article  CAS  Google Scholar 

  174. Du, H., Tang, F., Liu, D., Zhu, D., Zhou, W., Qu, S.: The microstructure and ferroelectric properties of (K0.5Na0.5)NbO3–LiNbO3 lead-free piezoelectric ceramics. Mat. Sci. Eng: B. 136, 165–169 (2007)

    Article  CAS  Google Scholar 

  175. Huang, R., Zhao, Y., Zhao, Y., Liu, R., Zhou, H.: Effects of sintering temperature and alkaline elements excess on the structure and electrical properties of (K0.462Na0.48Li0.058)1+xNbO3 lead-free piezoelectric ceramics. Curr. App. Physics. 11, 1205–1209 (2011)

    Article  Google Scholar 

  176. Muanghlua, R., Niemcharoen, S., Sutapun, M., Boonchom, B., Vittayakorn, N.: Phase transition behaviour and electrical properties of lead-free (K< sub> 0.5</sub> Na< sub> 0.5</sub>) NbO< sub> 3</sub>–LiNbO< sub> 3</sub>–LiSbO< sub> 3</sub> piezoelectric ceramics. Curr. Appl. Phys. 11, 434–437 (2011)

  177. Palei, P., Kumar, P.: Dielectric, ferroelectric and piezoelectric properties of (1–x)[K0.5Na0.5NbO3]−x[LiSbO3] ceramics. J. Physics Chem. Solids. 73, 827–833 (2012)

    Article  CAS  Google Scholar 

  178. Ji, W.-J., Chen, Y.-B., Zhang, S.-T., Yang, B., Zhao, X.-N., Wang, Q.-J.: Microstructure and electric properties of lead-free 0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3 ceramics. Ceramics. Int. 38, 1683–1686 (2012)

    Article  CAS  Google Scholar 

  179. Wu, J., Xiao, D., Wang, Y., Wu, W., Zhang, B., Li, J., Zhu, J.: CaTiO3-modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability. Scripta Materialia. 59, 750–752 (2008)

    Article  CAS  Google Scholar 

  180. Chang, Y., Yang, Z., Chao, X., Zhang, R., Li, X.: Dielectric and piezoelectric properties of alkaline-earth titanate doped (K0.5Na0.5)NbO3 ceramics. Materials Lett. 61, 785–789 (2007)

    Article  CAS  Google Scholar 

  181. Chae, M.-S., Lee, K.-S., Koh, J.-H.: Influence of calcination temperature on the piezoelectric properties of Ag2O doped 0.94 (K0. 5Na0. 5) NbO3–0.06 LiNbO3 ceramics. Ceram. Int. 39, S25–S29 (2013)

  182. Lin, D., Kwok, K.W., Chan, H.L.W.: Piezoelectric and ferroelectric properties of KxNa1−xNbO3 lead-free ceramics with MnO2 and CuO doping. J. Alloy. Compd. 461, 273–278 (2008)

    Article  CAS  Google Scholar 

  183. Wang, Z.L.: The new field of nanopiezotronics. Mater. Today 10, 20–28 (2007)

    Article  Google Scholar 

  184. Zak, A.K., Majid, W.A.: Characterization and X-ray peak broadening analysis in PZT nanoparticles prepared by modified sol–gel method. Ceramics Int. 36, 1905–1910 (2010)

    Article  Google Scholar 

  185. Pilban, S., Zak, A.K., Majid, W.A., Muhamad, M.: Synthesis and characterization of lead calcium titanate nanocomposite. AIP Confer. Proc. Amer. Instit. Phys. 2011, 183–185.

  186. Andryushina, I., Reznichenko, L., Alyoshin, V., Shilkina, L., Titov, S., Titov, V., Andryushin, K., Dudkina, S.: The PZT system (PbZr1-xTixO3, 0.0≤ x≤ 1.0): specific features of recrystallization sintering and microstructures of solid solutions (Part 1). Ceram. Int. 39, 753–761 (2013)

  187. Chandratreya, S.S., Fulrath, R.M., Pask, J.A.: Reaction mechanisms in the formation of PZT solid solutions. J. Am. Ceram. Soc. 64, 422–425 (1981)

    Article  CAS  Google Scholar 

  188. Dimitriu, E., Iuga, A., Ciupina, V., Prodan, G., Ramer, R.: PZT-type materials with improved radial piezoelectric properties. J. Eur. Ceram. Soc. 25, 2401–2404 (2005)

    Article  CAS  Google Scholar 

  189. Hammer, M., Hoffmann, M.J.: Sintering model for mixed-oxide-derived lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 3277–3284 (1998)

    Article  CAS  Google Scholar 

  190. Bian, L., Li, Z., Qi, X., Sun, Y., Jiang, G., Zhao, B., Yang, B., Dong, S.: Low-temperature sintered PMnS–PZT multilayer-ceramic for nano-step piezomotor application. Sens. Actuators, A 345, 113812 (2022)

    Article  CAS  Google Scholar 

  191. Lin, W., Fan, L., Lin, D., Zheng, Q., Fan, X., Sun, H.: Phase transition, ferroelectric and piezoelectric properties of Ba1−xCaxTi1−yZryO3 lead-free ceramics. Curr. Appl. Phys. 13, 159–164 (2013)

    Article  Google Scholar 

  192. Rubio-Marcos, F., Romero, J.J., Martín-Gonzalez, M.S., Fernández, J.F.: Effect of stoichiometry and milling processes in the synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction. J. Eur. Ceram. Soc. 30, 2763–2771 (2010)

    Article  CAS  Google Scholar 

  193. Simon-Seveyrat, L., Hajjaji, A., Emziane, Y., Guiffard, B., Guyomar, D.: Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications. Ceram. Int. 33, 35–40 (2007)

    Article  CAS  Google Scholar 

  194. Zhang, S.-W., Zhang, H., Zhang, B.-P., Zhao, G.: Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere. J. Europ. Ceramic Soc. 29, 3235–3242 (2009)

    Article  CAS  Google Scholar 

  195. Lee, J.S., Choi, M.S., Hung, N.V., Kim, Y.S., Kim, I.W., Park, E.C., Jeong, S.J., Song, J.S.: Effects of high energy ball-milling on the sintering behavior and piezoelectric properties of PZT-based ceramics. Ceram. Int. 33, 1283–1286 (2007)

    Article  CAS  Google Scholar 

  196. Trefalt, G., Malic̆, B., Kušc̆er, D., Holc, J., Kosec, M.: Synthesis of Pb(Mg1/3Nb2/3)O3 by self-assembled colloidal aggregates. J. Am. Ceramic Soc. 94, 2846–2856 (2011)

    Article  CAS  Google Scholar 

  197. Mahajan, S., Prakash, C., Thakur, O.P.: Piezoelectric properties of 0.5(PbNi1/3Nb2/3)O3–0.5Pb(Zr0.32Ti0.68)O3 ceramics prepared by solid state reaction and mechanochemical activation-assisted method. J. Alloys Comp. 471, 507–510 (2009)

    Article  CAS  Google Scholar 

  198. Xue, J., Wan, D., Wang, J.: Mechanochemical synthesis of nanosized lead titanate powders from mixed oxides. Mater. Lett. 39, 364–369 (1999)

    Article  CAS  Google Scholar 

  199. Prasad, V., Kumar, L.: Studies on some BaTiO3 electroceramics. Ferroelectrics 102, 141–150 (1990)

    Article  CAS  Google Scholar 

  200. Karaki, T., Yan, K., Miyamoto, T., Adachi, M.: Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO$_{3}$ nano-powder. Jpn. J. Appl. Phys. 46, L97–L98 (2007)

    Article  CAS  Google Scholar 

  201. Kong, L.B., Zhang, T.S., Ma, J., Boey, F.: Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater Sci. 53, 207–322 (2008)

    Article  CAS  Google Scholar 

  202. Frey, M.H., Payne, D.A.: Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158–3168 (1996)

    Article  CAS  Google Scholar 

  203. Wada, S., Suzuki, T., Noma, T.: Role of lattice defects in the size effect of barium titanate fine particles. J. Ceram. Soc. Jpn. 104, 383–389 (1996)

    Article  CAS  Google Scholar 

  204. Ferrer, P., Algueró, M., Castro, A.: Influence of the mechanochemical conditions on the processing of Bi4SrTi4O15 ceramics from submicronic powdered precursors. J. Alloy. Compd. 464, 252–258 (2008)

    Article  CAS  Google Scholar 

  205. Nath, A.K., Singh, K.C., Laishram, R., Thakur, O.P.: Ferroelectric, piezoelectric and electrostrictive properties of Ba(Ti1−xSnx)O3 ceramics obtained from nanocrystalline powder. Mater. Sci. Eng., B 172, 151–155 (2010)

    Article  CAS  Google Scholar 

  206. Singh, K.C., Nath, A.K.: Barium titanate nanoparticles produced by planetary ball milling and piezoelectric properties of corresponding ceramics. Mater. Lett. 65, 970–973 (2011)

    Article  CAS  Google Scholar 

  207. Zuo, R., Rödel, J., Chen, R., Li, L.: Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, 2010–2015 (2006)

    Article  CAS  Google Scholar 

  208. Singh, K.C., Jiten, C.: Lead-free piezoelectric ceramics manufactured from tantalum-substituted potassium sodium niobate nanopowders. Mater. Lett. 65, 85–88 (2011)

    Article  CAS  Google Scholar 

  209. Ur, S.-C., Mahmud, I., Yoon, M.-S.: Effect of high energy milling process on microstructure and piezoelectric/dielectric properties of K0. 475Na0. 475Li0. 05NbO3 solid solution. Ceram. Int. 39, 691–699 (2013)

  210. TabatabaiYazdi, S., Tajabor, N., SanaviKhoshnoud, D.: Magnetotransport and magnetoelastic effects in Co-doped La0.7Sr0.3MnO3 nanocrystalline perovskites. J. Magnet. Magnetic Mat. 322, 3131–3136 (2010)

    Article  CAS  Google Scholar 

  211. Sakka, S.: Handbook of sol-gel science and technology. 1. Sol-gel processing. Springer Science & Business Media (2005)

  212. Cernea, M., Andronescu, E., Radu, R., Fochi, F., Galassi, C.: Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J. Alloys Comp. 490, 690–694 (2010)

    Article  CAS  Google Scholar 

  213. Das, R.N., Pathak, A., Pramanik, P.: Low-temperature preparation of nanocrystalline lead zirconate titanate and lead lanthanum zirconate titanate powders using triethanolamine. J. Am. Ceram. Soc. 81, 3357–3360 (1998)

    Article  CAS  Google Scholar 

  214. Kim, C.Y., Sekino, T., Niihara, K.: Synthesis of bismuth sodium titanate nanosized powders by solution/sol–gel process. J. Am. Ceram. Soc. 86, 1464–1467 (2003)

    Article  CAS  Google Scholar 

  215. Kuo, W.-K., Lo, B., Ling, Y.-C.: Steric stabilization of sol-gel prepared BaTiO3 precursors with nonylphenoxypolyethoxyethanol. Mater. Chem. Phys. 60, 132–136 (1999)

    Article  CAS  Google Scholar 

  216. Linardos, S., Zhang, Q., Alcock, J.R.: Preparation of sub-micron PZT particles with the sol–gel technique. J. Eur. Ceram. Soc. 26, 117–123 (2006)

    Article  CAS  Google Scholar 

  217. Mu, G., Yang, S., Li, J., Gu, M.: Synthesis of PZT nanocrystalline powder by a modified sol–gel process using water as primary solvent source. J. Mater. Process. Technol. 182, 382–386 (2007)

    Article  CAS  Google Scholar 

  218. Wang, H., Zuo, R., Fu, J., Liu, Y.: Sol–gel derived (Li, Ta, Sb) modified sodium potassium niobate ceramics: processing and piezoelectric properties. J. Alloy. Compd. 509, 936–941 (2011)

    Article  CAS  Google Scholar 

  219. Zak, A.K., Abrishami, M.E., Majid, W.H.A., Yousefi, R., Hosseini, S.M.: Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram. Int. 37, 393–398 (2011)

    Article  CAS  Google Scholar 

  220. Zak, A.K., Majid, W., Darroudi, M., Yousefi, R.: Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater. Lett. 65, 70–73 (2011)

    Article  CAS  Google Scholar 

  221. Gunawidjaja, R., Myint, T., Eilers, H.: A factorial design approach for pressureless sintering in air of (Pb, La)(Zr, Ti)O3 synthesized via coprecipitation of oxide–alkoxides. Ceram. Int. 38, 775–786 (2012)

    Article  CAS  Google Scholar 

  222. Xiang, P.-H., Kinemuchi, Y., Nagaoka, T., Watari, K.: Sintering behaviors of bismuth titanate synthesized by a coprecipitation method. Mater. Lett. 59, 3590–3594 (2005)

    Article  CAS  Google Scholar 

  223. Cao, G., Liu, D.: Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Coll. Interface. Sci. 136, 45–64 (2008)

    Article  CAS  Google Scholar 

  224. Bae, C., Kim, S., Ahn, B., Kim, J., Sung, M.M., Shin, H.: Template-directed gas-phase fabrication of oxide nanotubes. J. Mater. Chem. 18, 1362–1367 (2008)

    Article  CAS  Google Scholar 

  225. Singh, S., Krupanidhi, S.B.: Synthesis and structural characterization of Ba0.6Sr0.4TiO3 nanotubes. Physics Lett. A. 367, 356–359 (2007)

    Article  CAS  Google Scholar 

  226. Liu, X., Wang, J., Zhang, J., Yang, S.: Sol–gel-template synthesis of ZnO nanotubes and its coaxial nanocomposites of LiMn2O4/ZnO. Mater. Sci. Eng., A 430, 248–253 (2006)

    Article  Google Scholar 

  227. Rørvik, P.M., Tadanaga, K., Tatsumisago, M., Grande, T., Einarsrud, M.-A.: Template-assisted synthesis of PbTiO3 nanotubes. J. Eur. Ceram. Soc. 29, 2575–2579 (2009)

    Article  Google Scholar 

  228. Nourmohammadi, A., Bahrevar, M.A., Hietschold, M.: Template-based electrophoretic deposition of perovskite PZT nanotubes. J. Alloy. Compd. 473, 467–472 (2009)

    Article  CAS  Google Scholar 

  229. Singh, S., Krupanidhi, S.B.: Synthesis and structural characterization of perovskite 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 nanotubes. Physics Lett. A. 375, 2176–2180 (2011)

    Article  CAS  Google Scholar 

  230. Limmer, S.J., Seraji, S., Wu, Y., Chou, T.P., Nguyen, C., Cao, G.Z.: Template-based growth of various oxide nanorods by sol–gel electrophoresis. Adv. Func. Mater. 12, 59–64 (2002)

    Article  CAS  Google Scholar 

  231. Ghasemian, M.B., Rawal, A., Shahrbabaki, Z., Zhang, Q., Lu, T., Liu, Y., Wang, D.: Evidence of phase coexistence in hydrothermally synthesized K 0.5 Na 0.5 NbO 3 nanofibers. J. Mat. Chem. A. 8, 8731–8739 (2020)

    Article  CAS  Google Scholar 

  232. Gu, H., Zhu, K., Pang, X., Shao, B., Qiu, J., Ji, H.: Synthesis of (K, Na) (Nb, Ta)O3 lead-free piezoelectric ceramic powders by high temperature mixing method under hydrothermal conditions. Ceram. Int. 38, 1807–1813 (2012)

    Article  CAS  Google Scholar 

  233. Jing, X., Li, Y., Yin, Q.: Hydrothermal synthesis of Na0.5Bi0.5TiO3 fine powders. Mat. Sci. Eng. B. 99, 506–510 (2003)

    Article  Google Scholar 

  234. Lv, J.-H., Zhang, M., Guo, M., Li, W.-C., Wang, X.-D.: Hydrothermal synthesis and characterization of KxNa(1–x)NbO3 powders. Int. J. Appl. Ceram. Technol. 4, 571–577 (2007)

    Article  CAS  Google Scholar 

  235. Trelcat, J.-F., d’Astorg, S., Courtois, C., Champagne, P., Rguiti, M., Leriche, A.: Influence of hydrothermal synthesis conditions on BNT-based piezoceramics. J. Eur. Ceram. Soc. 31, 1997–2004 (2011)

    Article  CAS  Google Scholar 

  236. Zhou, Y., Guo, M., Zhang, C., Zhang, M.: Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic. Ceramics Int. 35, 3253–3258 (2009)

    Article  CAS  Google Scholar 

  237. Ma, Y.J., Cho, J.H., Lee, Y.H., Kim, B.I.: Hydrothermal synthesis of (Bi1/2Na1/2)TiO3 piezoelectric ceramics. Mater. Chem. Phys. 98, 5–8 (2006)

    Article  CAS  Google Scholar 

  238. Texier Mandoki, N., Courtois, C., Champagne, P., Leriche, A.: Hydrothermal synthesis of doped PZT powders: sintering and ceramic properties. Mater. Lett. 58, 2489–2493 (2004)

    Article  CAS  Google Scholar 

  239. Kwon, S.-G., Choi, K., Kim, B.-I.: Solvothermal synthesis of nano-sized tetragonal barium titanate powders. Mater. Lett. 60, 979–982 (2006)

    Article  CAS  Google Scholar 

  240. Mao, Y., Mao, S., Ye, Z.-G., Xie, Z., Zheng, L.: Solvothermal synthesis and Curie temperature of monodispersed barium titanate nanoparticles. Mater. Chem. Phys. 124, 1232–1238 (2010)

    Article  CAS  Google Scholar 

  241. Razali, R., Zak, A.K., Majid, W., Darroudi, M.: Solvothermal synthesis of microsphere ZnO nanostructures in DEA media. Ceram. Int. 37, 3657–3663 (2011)

    Article  CAS  Google Scholar 

  242. Yang, X., Zhao, Y., Yang, Y., Dong, Z.: Facile hydrothermal preparation of furcated PZT nanowhiskers. Mater. Lett. 61, 3462–3465 (2007)

    Article  CAS  Google Scholar 

  243. Yousefi, R., Zak, A.K., Jamali-Sheini, F.: The effect of group-I elements on the structural and optical properties of ZnO nanoparticles. Ceram. Int. 39, 1371–1377 (2013)

    Article  CAS  Google Scholar 

  244. Yousefi, R., Jamali-Sheini, F., Zak, A.K.: A comparative study of the properties of ZnO nano/microstructures grown using two types of thermal evaporation set-up conditions. Chem. Vapor Depos. 18, 215–220 (2012)

    Article  CAS  Google Scholar 

  245. Yousefi, R., Muhamad, M.R., Zak, A.K.: Investigation of indium oxide as a self-catalyst in ZnO/ZnInO heterostructure nanowires growth. Thin Solid Films 518, 5971–5977 (2010)

    Article  CAS  Google Scholar 

  246. Yousefi, R., Muhamad, M.R., Zak, A.K.: The effect of source temperature on morphological and optical properties of ZnO nanowires grown using a modified thermal evaporation set-up. Curr. Appl. Phys. 11, 767–770 (2011)

    Article  Google Scholar 

  247. Yousefi, R., Zak, A.: Growth and characterization of ZnO nanowires grown on the Si (111) and Si (100) substrates: Optical properties and biaxial stress of nanowires. Mater. Sci. Semicond. Process. 14, 170–174 (2011)

    Article  CAS  Google Scholar 

  248. Yousefi, R., Zak, A.K., Jamali-Sheini, F.: The effect of group-I elements on the structural and optical properties of ZnO nanoparticles. Ceram. Int. 39, 1371–1377 (2013)

    Article  CAS  Google Scholar 

  249. Kim, D.-H., Na, J.S., Rhee, S.-W.: Metallorganic chemical vapor deposition of Pb„Zr, Ti…O3 films using a single mixture of metallorganic precursors. J. Electrochem. Soc. 148, C668–C673 (2001)

    Article  CAS  Google Scholar 

  250. Yousefi, R., Zak, A.K., Mahmoudian, M.: Growth and characterization of Cl-doped ZnO hexagonal nanodisks. J. Solid State Chem. 184, 2678–2682 (2011)

    Article  CAS  Google Scholar 

  251. Azimi, B., Milazzo, M., Lazzeri, A., Berrettini, S., Uddin, M.J., Qin, Z., Buehler, M.J., Danti, S.: Electrospinning piezoelectric fibers for biocompatible devices. Adv. Healthcare Mater. 9, 1901287 (2020)

    Article  CAS  Google Scholar 

  252. Fan, M., Hui, W., Li, Z., Shen, Z., Li, H., Jiang, A., Chen, Y., Liu, R.: Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr0.3, Ti0.7)O3 nanofibers. Microelectron. Eng. 98, 371–373 (2012)

    Article  CAS  Google Scholar 

  253. Chen, Y.Q., Zheng, X.J., Feng, X., Dai, S.H., Zhang, D.Z.: Fabrication of lead-free (Na0.82K0.18)0.5Bi0.5TiO3 piezoelectric nanofiber by electrospinning. Mat. Res. Bull. 45, 717–721 (2010)

    Article  CAS  Google Scholar 

  254. Hossain, M., Kim, A.: The effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning. Mater. Lett. 63, 789–792 (2009)

    Article  CAS  Google Scholar 

  255. Khajelakzay, M., Taheri-Nassaj, E.: Synthesis and characterization of PB(ZR0.52, TI0.48)O3 nanofibers by electrospinning, and dielectric properties of PZT-Resin composite. Mat. Lett. 75, 61–64 (2012)

    Article  CAS  Google Scholar 

  256. Park, J.Y., Kim, J.-J., Kim, S.S.: Electrical transport properties of ZnO nanofibers. Microelectron. Eng. 101, 8–11 (2013)

    Article  CAS  Google Scholar 

  257. Xu, S., Poirier, G., Yao, N.: Fabrication and piezoelectric property of PMN-PT nanofibers. Nano Energy 1, 602–607 (2012)

    Article  CAS  Google Scholar 

  258. Yuh, J., Nino, J.C., Sigmund, W.M.: Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater. Lett. 59, 3645–3647 (2005)

    Article  CAS  Google Scholar 

  259. Arunmozhi, G., Ganesamoorthy, S., Kannan, C.V., de M. Gomes, E., Ramasamy, P.: Crystal growth, dielectric and FIR reflectivity studies on PZN(0.91)-PT(0.09) single crystals. Cryst. Res. Technol. 40, 773–777 (2005)

  260. Klicker, K.A., Biggers, J.V., Newnham, R.E.: Composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5–9 (1981)

    Article  Google Scholar 

  261. Cass, R.B.: Fabrication of continuous ceramic fiber by the viscous suspension spinning process. Am. Ceram. Soc. Bull. 70, 424 (1991)

    CAS  Google Scholar 

  262. Selvaraj, U., Prasadarao, A.V., Komarneni, S., Brooks, K., Kurtz, S.: Sol-gel procwssing of PbTiO3 and Pb(Zr0.52Ti0.48)O3 fibers. J. Mat. Res. 7, 992–996 (1992)

    Article  CAS  Google Scholar 

  263. Meyer, R., Shrout, T., Yoshikawa, S.: Lead zirconate titanate fine fibers derived from alkoxide-based sol-gel technology. J. Am. Ceram. Soc. 81, 861–868 (1998)

    Article  CAS  Google Scholar 

  264. Zhang, M., Salvado, I.M.M., Vilarinho, P.M.: Synthesis and characterization of lead zirconate titanate fibers prepared by the sol–gel method: the role of the acid. J. Am. Ceram. Soc. 86, 775–781 (2003)

    Article  CAS  Google Scholar 

  265. Alkoy, S., Yanik, H., Yapar, B.: Fabrication of lead zirconate titanate ceramic fibers by gelation of sodium alginate. Ceram. Int. 33, 389–394 (2007)

    Article  CAS  Google Scholar 

  266. Dent, A.C., Nelson, L.J., Bowen, C.R., Stevens, R., Cain, M., Stewart, M.: Characterisation and properties of fine scale PZT fibres. J. Eur. Ceram. Soc. 25, 2387–2391 (2005)

    Article  CAS  Google Scholar 

  267. Kornmann, X., Huber, C.: Microstructure and mechanical properties of PZT fibres. J. Eur. Ceram. Soc. 24, 1987–1991 (2004)

    Article  CAS  Google Scholar 

  268. Zhang, M., Miranda Salvado, I.M., Vilarinho, P.M.: The effect of acid mixture on the structure of sol–gel PZT fibers. Mater. Lett. 57, 4271–4275 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank University Technology Malaysia (UTM) for their financial support of the UTM-FR grant (Vot 22H16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khorsand Zak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorsand Zak, A., Yazdi, S.T., Abrishami, M.E. et al. A review on piezoelectric ceramics and nanostructures: fundamentals and fabrications. J Aust Ceram Soc (2024). https://doi.org/10.1007/s41779-024-00990-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41779-024-00990-3

Keywords

Navigation