Skip to main content
Log in

Good high-temperature stability and improved piezoelectric properties of (K0.5Na0.5)NbO3–Bi(Mg0.5Zr0.5)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1−x)(K0.5Na0.5)NbO3xBi(Mg0.5Zr0.5)O3 (abbreviated as KNN–BMZ) [x = 0, 0.005, 0.0075, 0.01, 0.015, 0.02] solid solution ceramics were fabricated by an ordinary ceramic sintering technique. The piezoelectric and dielectric properties of ceramics were enhanced significantly through adding Bi(Mg0.5Zr0.5)O3. X-ray powder diffraction analysis certified that the Bi(Mg0.5Zr0.5)O3 has diffused into (K0.5Na0.5)NbO3 to form a new perovskite structure solid solution. The addition of Bi(Mg0.5Zr0.5)O3 depressed the orthorhombic–tetragonal phase transition temperature from 205 to 136 °C and tetragonal–pseudocubic phase transition temperature (Curie point) from 419 to 397 °C. Furthermore, the ceramics exhibited higher relative permittivity and lower dielectric loss than the pure (K0.5Na0.5)NbO3. Especially, when x = 0.0075, the ceramics showed the improved high relative permittivity (ε ~2024), low dielectric loss (tanδ <3.8%) and thermal stability (Δε/ε143°C ≤ ±10%) over a wide temperature range (143–337 °C). Moreover, when x = 0.005, the piezoelectric constant was improved to d 33 = 118 pC/N. These results indicated that the BMZ added ceramics have potential applications in piezoelectric and thermal stability devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  Google Scholar 

  2. X. Pang, J. Qiu, K. Zhu, J. Du, Ceram. Int. 38, 2521–2527 (2012)

    Article  Google Scholar 

  3. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.E. Park, Appl. Phys. Lett. 74, 2059–2061 (1999)

    Article  Google Scholar 

  4. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385–392 (2004)

    Article  Google Scholar 

  5. E. Cross, Nature 432, 24–25 (2004)

    Article  Google Scholar 

  6. J. Chen, H.M. Chan, M.P. Harmer, J. Am. Ceram. Soc. 72, 593–598 (2005)

    Article  Google Scholar 

  7. J.G. Wu, D.X. Xiao, Y.Y. Wang, J. Alloys Compd. 476, 782–786 (2009)

    Article  Google Scholar 

  8. S. Wang, H. He, H. Su, J. Mater. Sci. Mater. Electron. 24, 2385–2389 (2013)

    Article  Google Scholar 

  9. Y. Yuan, M. Du, S. Zhang, J. Mater. Sci. Mater. Electron. 20, 157–162 (2009)

    Article  Google Scholar 

  10. C.W. Ahn, E.D. Jeong, S.Y. Lee, H.J. Lee, S.H. Kang, I.W. Kim, Appl. Phys. Lett. 93, 212905 (2008)

    Article  Google Scholar 

  11. M. Chandrasekhar, P. Kumar, Ceram. Int. 41, 5574–5580 (2015)

    Article  Google Scholar 

  12. R.Z. Zuo, S. Su, J. Fu, Z.K. Xu, J. Mater. Sci. Mater. Electron. 20, 469–472 (2009)

    Article  Google Scholar 

  13. S. Wongsaenmai, S. Ananta, R. Yimnirun, Ceram. Int. 38, 147–152 (2012)

    Article  Google Scholar 

  14. S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108 (2006)

    Article  Google Scholar 

  15. Y.L. Wang, X.L. Chen, H.F. Zhou, L. Fang, L.J. Liu, H. Zhang, J. Mater. Sci. Mater. Electron. 24, 770–775 (2013)

    Article  Google Scholar 

  16. Z.T. Yang, H.L. Du, S.B. Qu, Y.D. Hou, H. Ma, J.F. Wang, J. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A 4, 13778–13785 (2016)

    Article  Google Scholar 

  17. T.Q. Shao, H.L. Du, H. Ma, S.B. Qu, J. Wang, J.F. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A 5, 554–563 (2017)

    Article  Google Scholar 

  18. Y. Guo, K. Kakimoto, H. Ohsato, Solid State Commun. 129, 279–284 (2004)

    Article  Google Scholar 

  19. H. Gu, K. Zhu, X. Pang, B. Shao, J. Qiu, H. Ji, Ceram. Int. 38, 1807–1813 (2012)

    Article  Google Scholar 

  20. Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121–4123 (2004)

    Article  Google Scholar 

  21. R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)

    Article  Google Scholar 

  22. J.G. Wu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, Z.H. Pu, Appl. Phys. Lett. 91, 132914 (2007)

    Article  Google Scholar 

  23. Y. Guo, K. Kakimoto, H. Ohsato, J. Appl. Phys. 43, 6662–6666 (2004)

    Article  Google Scholar 

  24. F. He, X.L. Chen, J. Chen, Y.L. Wang, H.F. Zhou, L. Fang, J. Mater. Sci. Mater. Electron. 24, 4346–4350 (2013)

    Article  Google Scholar 

  25. X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, Ceram. Int. 41, 2081–2088 (2015)

    Article  Google Scholar 

  26. H.L. Du, W.C. Zhou, F. Luo, J. Appl. Phys. 104, 044104 (2008)

    Article  Google Scholar 

  27. X.L. Chen, J. Chen, D.D. Ma, G.S. Huang, L. Fang, H.F. Zhou, Mater. Lett. 145, 247–249 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11664008, 11364012 and 11464009), Natural Science Foundation of Guangxi (Nos. 2015GXNSFDA139033 and 2014GXNSFAA118326), Research Start-up Funds Doctor of Guilin University of Technology (Nos. 002401003281 and 002401003282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, G., Huang, G. et al. Good high-temperature stability and improved piezoelectric properties of (K0.5Na0.5)NbO3–Bi(Mg0.5Zr0.5)O3 ceramics. J Mater Sci: Mater Electron 28, 13126–13131 (2017). https://doi.org/10.1007/s10854-017-7146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7146-5

Navigation