Skip to main content
Log in

An approach to further improve piezoelectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this communication, an approach to further improve the electrical properties of (K0.5Na0.5)NbO3 (KNN) ceramic (abbreviated as KNN2) was reported. For the conventional ceramic technique (abbreviated as KNN1), the raw materials of K2CO3, Na2CO3 and Nb2O5 were directly used without further processing, while those for KNN2 were ball milled before mixing. The powders prepared by KNN2 exhibited smaller and uniform. The ceramics have higher densities than that of KNN1, which significantly improved the piezoelectric and ferroelectric properties of ceramics. The KNN2 ceramics exhibited very good piezoelectric properties with d33 = 123 pC/N, kp = 33.8 %, Qm = 219.8 and P r  = 20.2 μC/cm3, indicating that KNN2 is a strategy to obtain a dense KNN ceramic with more excellent electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438–442 (1959)

    Article  Google Scholar 

  2. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  Google Scholar 

  3. G.H. Haertling, J. Am. Ceram. Soc. 50, 329–330 (1967)

    Article  Google Scholar 

  4. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385–392 (2004)

    Article  Google Scholar 

  5. B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J. Eur. Ceram. Soc. 25, 2707–2711 (2005)

    Article  Google Scholar 

  6. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190–1196 (2005)

    Article  Google Scholar 

  7. L. Bai, K.J. Zhu, J.H. Qiu, H.L. Ji, L.K. Su, Particuology 8, 477–481 (2010)

    Article  Google Scholar 

  8. G. Li, X.Q. Wu, W. Ren, P. Shi, X.F. Chen, X. Yao, Ceram. Int. 38, 279–281 (2010)

    Article  Google Scholar 

  9. H.L. Du, Z.M. Li, F.S. Tang, S.B. Qu, Z.B. Pei, W.C. Zhou, Mater. Sci. Eng. B 131, 83–87 (2006)

    Article  Google Scholar 

  10. R.C. Chang, S.Y. Chu, Y.P. Wong, Y.F. Lin, C.S. Hong, Sens. Actuat. A 136, 267–272 (2007)

    Article  Google Scholar 

  11. Y.F. Chang, S.F. Poterala, Z.P. Yang et al., Appl. Phys. Lett. 23, 232905 (2009)

    Article  Google Scholar 

  12. R.P. Wang, R.J. Xie, T. Sekiya, Y. Shimojo, Mater. Res. Bull. 39, 1709–1715 (2004)

    Article  Google Scholar 

  13. J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706–709 (2006)

    Article  Google Scholar 

  14. B.P. Zhang, J.F. Li, K. Wang, J. Am. Ceram. Soc. 89, 1605–1609 (2006)

    Article  Google Scholar 

  15. Y.T. Lu, X.M. Chen, D.Z. Jin, X. Hu, Mater. Res. Bull. 40, 1847–1855 (2005)

    Article  Google Scholar 

  16. L.J. Liu, Y.M. Huang, Z. Yang, L. Fang, C.Z. Hu, Mater. Chem. Phys. 126, 769–772 (2011)

    Article  Google Scholar 

  17. R. Zuo, X. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)

    Article  Google Scholar 

  18. K. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jap. J. Appl. Phys. 44, 7064–7067 (2005)

    Article  Google Scholar 

  19. S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, Solid State Commun. 141, 675–679 (2007)

    Article  Google Scholar 

  20. H.L. Du, W.C. Zhou, F. Luo et al., J. Appl. Phys. 41, 085416 (2008)

    Google Scholar 

  21. D.J. Liu, H.L. Du, F.S. Tang et al., J. Electron. Ceram. 2, 107–111 (2008)

    Google Scholar 

  22. H.L. Du, W.C. Zhou, F. Luo et al., Appl. Phys. Lett. 20, 202907 (2007)

    Article  Google Scholar 

  23. Y.F. Chang, Z.P. Yang, D.F. Ma et al., J. Appl. Phys. 5, 054101 (2009)

    Article  Google Scholar 

  24. L.Q. Cheng, J.J. Zhou, K. Wang, J.F. Li, Q.M. Wang, J. Mate, Science 47, 6908–6914 (2012)

    Google Scholar 

  25. K. Park, J.G. Kim, K.J. Lee, W.S. Cho, W.S. Hwang, Ceram. Int. 34, 1573–1577 (2008)

    Article  Google Scholar 

  26. Z.F. Li, Y.X. Li, J.W. Zhai, Curr. Appl. Phys. 11, S2–S13 (2011)

    Google Scholar 

  27. M.H. Rahaman, Ceramic Processing (Baca Raton, Florida 2007)

  28. H.T. Martirenat, J.C. Burfoot, J. Phys. C 7, 3182–3192 (1974)

    Article  Google Scholar 

  29. K.V.R. Prasad, A.R. Raju, K.B.R. Varma, J. Mater. Sci. 29, 2691–2696 (1994)

    Article  Google Scholar 

  30. Y. Guo, K. Kakimoto, H. Ohsato, Jap. J. Appl. Phys. 43, 6662–6666 (2004)

    Article  Google Scholar 

  31. S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Jap. J. Appl. Phys. 43, 1072–1074 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 11364012, 51102058 21261007 and 21061004), Natural Science Foundation of Guangxi (Nos. 2013GXNSFAA019291 and 2012GXNSFDA053024), Research start-up funds Doctor of Guilin University of Technology (No. 002401003282), Project of Department of Science and Technology of Guangxi (No. 1348020-11) and Guilin (Nos. 20120112-1 and 20120112-2), and Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., He, F., Chen, J. et al. An approach to further improve piezoelectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramic. J Mater Sci: Mater Electron 25, 2634–2637 (2014). https://doi.org/10.1007/s10854-014-1922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1922-2

Keywords

Navigation