Skip to main content
Log in

Facile Synthesis of Hierarchical CuO Nanoflower for Supercapacitor Electrodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Three-dimensional CuO nanoflowers were prepared on the surface of flexible Cu foil (CuO@Cu) by a chemical deposition method. The morphology and composition of CuO nanoflowers were examined by scanning electron microscopy and x-ray diffraction spectroscopy, respectively. The electrochemical supercapacitive properties of CuO nanoflowers were investigated by cyclic voltammetry, galvanostatic charge–discharge measurements and electrochemical impedance spectroscopy (EIS). Electrochemical tests indicated that the optimized product showed a high specific capacitance of 284.5 F g−1 at the current density of 0.5 mA cm−2. EIS analysis indicated that the CuO nanoflowers exhibited good conductivity and very low internal resistance. The cyclability of the electrode demonstrates a 20% loss in capacitance over 1000 cycles. Thus, the results revealed that CuO nanoflower active materials hold the potential for electrochemically stable supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  Google Scholar 

  2. S.Z. Ren, M. Wang, M.L. Xu, Y. Yang, C.Y. Jia, and C. Hao, J. Solid State Electr. 18, 909 (2013).

    Article  Google Scholar 

  3. L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  Google Scholar 

  4. K.P.S.P. Kumaresa, D.S. Dhawale, S. Joseph, C. Anand, M.A. Wahab, A. Mano, C.I. Sathish, V.V. Balasubramanian, T. Sivakumar, and A. Vinu, Microporous Mesoporous Mater. 172, 77 (2013).

    Article  Google Scholar 

  5. J. Zhang, L.B. Kong, J.J. Cai, H. Li, Y.C. Luo, and L. Long, Microporous Mesoporous Mater. 132, 154 (2010).

    Article  Google Scholar 

  6. S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, and J.H. Lee, J. Mater. Chem. 22, 767 (2012).

    Article  Google Scholar 

  7. H. Jiang, P.S. Lee, and C.Z. Li, Energy Environ. Sci. 6, 41 (2013).

    Article  Google Scholar 

  8. G.A. Snook, P. Kao, and A.S. Best, J. Power Sources 196, 1 (2011).

    Article  Google Scholar 

  9. M. Mastragostino, C. Arbizzani, and F. Soavi, Solid State Ionics 148, 493 (2002).

    Article  Google Scholar 

  10. L.D. Feng, Y.F. Zhu, H.Y. Ding, and C.Y. Ni, J. Power Sources 267, 430 (2014).

    Article  Google Scholar 

  11. H. Li, Y.H. Ni, Y.F. Cai, L. Zhang, J.Z. Zhou, J.M. Hong, and X.W. Wei, J. Mater. Chem. 19, 594 (2009).

    Article  Google Scholar 

  12. H.Z. Wan, J.J. Jiang, Y.J. Ruan, J.W. Yu, L. Zhang, H.C. Chen, L. Miao, and S.W. Bie, Part. Part. Syst. Char. 31, 857 (2014).

    Article  Google Scholar 

  13. N.B. Trung, T.V. Tam, H.R. Kim, S.H. Hur, E.J. Kim, and W.M. Choi, Chem. Eng. J. 255, 89 (2014).

    Article  Google Scholar 

  14. P.L. Taberna, G. Chevallier, P. Simon, D. Plée, and T. Aubert, Mater. Bull. 41, 478 (2006).

    Article  Google Scholar 

  15. F. Lufrano and P. Staiti, Int. J. Electrochem. Sci. 5, 903 (2010).

    Google Scholar 

  16. S.Y. Kim, H.M. Jeong, J.H. Kwon, I.W. Ock, W.H. Suh, G.D. Stucky, and K.J. Kang, Energy Environ. Sci. 8, 188 (2015).

    Article  Google Scholar 

  17. X. Wang, T. Wang, C. Yang, H.D. Li, and P. Liu, Appl. Surf. Sci. 287, 242 (2013).

    Article  Google Scholar 

  18. Q.H. Yang, Z.Z. Hou, and T.Z. Huang, J. Appl. Polym. Sci. 132, 11 (2015).

  19. L. Li, A.R.O. Raji, H.L. Fei, Y. Yang, E.L.G. Samuel, and J.M. Tour, ACS Appl. Mater. Inter. 5, 6622 (2013).

    Article  Google Scholar 

  20. C.Q. Dong, Q.G. Bai, G.H. Cheng, B.G. Zhao, H. Wang, Y.L. Gao, and Z.H. Zhang, Rsc. Adv. 5, 6207 (2015).

    Article  Google Scholar 

  21. J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, and S. Wang, Nano Lett. 14, 831 (2014).

    Article  Google Scholar 

  22. A.G. Xiao, S.B. Zhou, C.G. Zuo, Y.B. Zhuan, and X. Ding, Mater. Res. Bull. 61, 54 (2015).

    Article  Google Scholar 

  23. Y.C. Qiu, Y.H. Zhao, X.W. Yang, W.F. Li, Z.H. Wei, J.W. Xiao, S.F. Leung, Q.H. Lin, H.K. Wu, Y.G. Zhang, Z.Y. Fan, and S.H. Yang, Nanoscale 6, 3626 (2014).

    Article  Google Scholar 

  24. Y.X. Zhang, M. Huang, F. Li, and Z.Q. Wen, Int. J. Electrochem. Sci. 8, 8645 (2013).

    Google Scholar 

  25. Y. Lu, H.L. Yan, K.W. Qiu, J.B. Cheng, W.X. Wang, X.M. Liu, C.C. Tang, J.K. Kim, and Y.S. Luo, Rsc. Adv. 5, 10773 (2015).

    Article  Google Scholar 

  26. K.P.S. Prasad, D.S. Dhawale, T. Sivakumar, S.S. Aldeyabet, J.S.M. Zaidi, K. Ariga, and A. Vinu, Sci. Technol. Adv. Mater. 12, 044602 (2011).

    Article  Google Scholar 

  27. G.L. Wang, J.C. Huang, S.L. Chen, Y.Y. Gao, D.X. Cao, and J. Power, Sources 196, 5756 (2011).

    Article  Google Scholar 

  28. L.G. Yu, G.M. Zhang, Y. Wu, X. Bai, and D.Z. Guo, J. Cryst. Growth 310, 3125 (2008).

    Article  Google Scholar 

  29. Y. Cudennec and A. Lecerf, Solid State Sci. 5, 1471 (2003).

    Article  Google Scholar 

  30. Y.H. Li, S. Chang, X.L. Liu, J.C. Huang, G.L. Wang, and D.X. Cao, Electrochim. Acta 85, 393 (2012).

    Article  Google Scholar 

  31. Y.K. Hsu, Y.C. Chen, and Y.G. Lin, J. Electroanal. Chem. 673, 43 (2012).

    Article  Google Scholar 

  32. Y. Liu, Y.L. Ying, Y.Y. Mao, L. Gu, Y.W. Wang, and X.S. Peng, Nanoscale 5, 9134 (2013).

    Article  Google Scholar 

  33. S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, and V.J. Fulari, J. Electroanl. Chem. 732, 80 (2014).

    Article  Google Scholar 

  34. K. Wang, X.M. Dong, C.J. Zhao, X.Z. Qian, and Y.L. Xu, Electrochim. Acta 152, 433 (2015).

    Article  Google Scholar 

  35. B.J. Vidyadharan, I.I. Misnon, J. Ismail, M.M. Yusoff, and R. Jose, J. Alloys Compd. 633, 22 (2015).

    Article  Google Scholar 

  36. G.J. Navathe, D.S. Patil, P.R. Jadhav, D.V. Awale, A.M. Teli, S.C. Bhise, S.S. Kolekar, M.M. Karanjkar, J.H. Kim, and P.S. Patil, J. Electronanl. Chem. 738, 170 (2015).

    Article  Google Scholar 

  37. G.S. Gund, D.P. Dubal, D.S. Dhawale, S.S. Shinde, and C.D. Lokhande, Rsc. Adv. 3, 24099 (2013).

    Article  Google Scholar 

  38. D.W. Kim, K.Y. Rhee, and S.J. Park, J. Alloys Compd. 530, 6 (2012).

    Article  Google Scholar 

  39. X.Z. Yu, B.G. Lu, and Z. Xu, Adv. Mater. 26, 1044 (2014).

    Article  Google Scholar 

  40. R.A. Dar, G.A. Naikoo, P.K. Kalambate, L. Giri, F. Khan, S.P. Karna, and A.K. Srivastava, Electrochimi. Acta 163, 196 (2015).

    Article  Google Scholar 

  41. A. Pendashteh, M.F. Mousavi, and M.S. Rahmanifar, Electrochim. Acta 88, 347 (2013).

    Article  Google Scholar 

  42. Z.Q. Zhang, C.C. Ma, M. Huang, F. Li, S.J. Zhu, C. Hua, L. Yu, H.L. Zheng, X.B. Hu, and Y.X. Zhang, J. Mater. Sci. Mater. El. 26, 4212 (2015).

    Article  Google Scholar 

  43. J. Xu, D.X. Wang, Y. Yuan, W. Wei, S.J. Gu, R.N. Liu, X.J. Wang, L. Liu, and W.L. Xu, Cellulose 22, 1355 (2015).

    Article  Google Scholar 

  44. F. Yang, P.F. Liu, and Z.J. Yang, Ionics 21, 185 (2014).

    Google Scholar 

  45. S.E. Moosavifard, J. Shamsi, S. Fani, and S. Kadkhodazade, Ceram. Int. 40, 15973 (2014).

    Article  Google Scholar 

  46. C.H. Wang, J.L. Liu, and H.Y. Huang, Electrochim. Acta 182, 47 (2015).

    Article  Google Scholar 

  47. D.Q. Su, L.J. Pan, X. Fu, and H. Ma, Appl. Surf. Sci. 324, 349 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Natural Science Foundation of China (Grant No. 51301117) and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021003-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Li, Z., Dai, Z. et al. Facile Synthesis of Hierarchical CuO Nanoflower for Supercapacitor Electrodes. J. Electron. Mater. 45, 4237–4245 (2016). https://doi.org/10.1007/s11664-016-4587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4587-1

Keywords

Navigation