Skip to main content
Log in

Surfactant assisted-SnO2 nanorods and nanoflowers synthesised by hydrothermal method for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, using polyvinyl alcohol (PVA) and sodium hexametaphosphate (SHP) as a surfactant solution, tetragonal SnO2 nanoparticles (NPs) were synthesised using the hydrothermal technique. NPs resulting from this process are named Sn-SHP and Sn-PVA.X-ray diffraction study revealed tetragonal crystal structure for both Sn-SHP and Sn-PVA nanoparticles, matching well with the JCPDS Card No. 88-0287. Scanning electron microscopy (SEM) showed rod-shaped Sn-SHP NPs, whereas Sn-PVA NPs have flower-like forms. A band gap energy of 3.71 and 3.84 eV was measured for the Sn-SHP and the Sn-PVA nanoparticles. The various oxidation states of SnO2 were confirmed by XPS spectra in order to confirm its oxidation states. The electrodes were analysed by using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical ion spectroscopy (EIS) in 6 M KOH electrolytes. For Sn-PVA electrodes, the computed specific capacitance (Cs) values are 330.52, 71.25, 27.34, and 18.85 Fg−1 at scan rates of 2, 10, 30, and 50 mVs−1; whereas for Sn-SHP electrodes, the obtained values are 256.24, 55.46, 21.04, and 14.45 Fg−1 at scan rates of 2, 10, 30, and 50 mVs−1. Additionally, from the GCD curves demonstrate that the Sn-PVA electrode has Cs of 126, 98, 81, and 71 Fg−1, and Sn-SHP electrodes revealed Cs of 75.65, 66.44, 48.69, and 25.97 Fg−1 at current density of 1, 2, 4, and 6 Ag−1, respectively. Galvanostatic charge–discharge curves for Sn-SHP and Sn-PVA NPs were traced in a potential window ranging from 0.03 to 0.4 V, and it was ascertained that Sn-PVA with flower shaped nanoparticles retains Sc of 126 Fg−1 at current density of 1 Ag−1, making it potential candidate for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.K. Sun, S.T. Myung, ACS Energy Lett. 3, 2620–2640 (2018)

    CAS  Google Scholar 

  2. A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Colloid Interface Sci. 473, 22–27 (2016)

    CAS  PubMed  Google Scholar 

  3. C. Yang, M. Sun, L. Zhang, P. Liu, P. Wang, H. Lu, A.C.S. Appl, Mater. Interfaces 11(16), 14713–14721 (2019)

    CAS  Google Scholar 

  4. S. Sivakumar, Y. Robinson, N.A. Mala, Appl. Surf. Sci. Adv. 12, 100344 (2022)

    Google Scholar 

  5. N.A. Mala, M.A. Dar, S. Sivakumar, S. Husain, K.M. Batoo, Inorg. Chem. Commun. 142, 109661 (2022)

    CAS  Google Scholar 

  6. N.A. Mala, M.A. Dar, S. Sivakumar, T.A. Dar, E. Manikandan, J. Nanoparticle Res. 24(11), 229 (2022)

    CAS  Google Scholar 

  7. T. Li, G.H. Li, L.H. Li, L. Liu, Y. Xu, H.Y. Ding, T. Zhang, A.C.S. Appl, Mater. Interfaces 8(4), 2562–2572 (2016)

    CAS  Google Scholar 

  8. Y. Liu, X. Peng, Appl. Mater. Today 8, 104–115 (2017)

    Google Scholar 

  9. H. Jia, Q. Li, C. Li, Y. Song, H. Zheng, J. Zhao, W. Zhang, X. Liu, Z. Liu, Y. Liu, Chem. Eng. J. 354, 254–260 (2018)

    CAS  Google Scholar 

  10. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, F. Zhang, Powder Technol. 333, 153–159 (2018)

    CAS  Google Scholar 

  11. L. Xiao, W. Sun, X. Zhou, Z. Cai, F. Hu, Vacuum 156, 291–297 (2018)

    CAS  Google Scholar 

  12. X. Li, C. Hu, X. Wang, Y. Xi, Appl. Surf. Sci. 258(10), 4370–4376 (2012)

    CAS  Google Scholar 

  13. B.G.S. Raj, A.M. Asiri, A.H. Qusti, J.J. Wu, S. Anandan, Ultrason. Sonochem. 21(6), 1933–1938 (2014)

    Google Scholar 

  14. S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, L.S. Roselin, H.L. Hsu, R. Selvin, Results Phys. 12, 878–885 (2019)

    Google Scholar 

  15. R.M. Kore, B.J. Lokhande, J. Alloys Compd. 725, 129–138 (2017)

    CAS  Google Scholar 

  16. G.V. Pereira, V.A. Freitas, H.S. Oliveira, L.C.A. Oliveira, J.C. Belchior, RSC Adv. 4(109), 63650–63654 (2014)

    CAS  Google Scholar 

  17. M. Jayalakshmi, M.M. Rao, N. Venugopal, K.B. Kim, J. Power. Sour. 166(2), 578–583 (2007)

    CAS  Google Scholar 

  18. M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, A.C.S. Appl, Mater. Interfaces 7(27), 14905–14911 (2015)

    CAS  Google Scholar 

  19. A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Ind. Eng. Chem. 56, 90–98 (2017)

    CAS  Google Scholar 

  20. A.A. Yadav, Y.M. Hunge, B.K. Kim, S.W. Kang, Surf. Interfaces 34, 102340 (2022)

    CAS  Google Scholar 

  21. A.A. Yadav, Y.M. Hunge, S. Ko, S.W.K. Kang, Materials 15(17), 6133 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Anil Kumar, A.A. Yadav, B.A. Al-Asbahi, S.W. Kang, M. Moniruzzaman, Molecules 27(21), 7458 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, J. Mater. Sci. Mater. Electron. 29, 16401–16409 (2018)

    CAS  Google Scholar 

  24. E. Ramasamy, J. Lee, J. Phys. Chem. C 114(50), 22032–22037 (2010)

    CAS  Google Scholar 

  25. M. Wu, W. Zeng, Q. He, J. Zhang, Mater. Sci. Semicond. Process. 16(6), 1495–1501 (2013)

    CAS  Google Scholar 

  26. Y. Sun, W.D. Chemelewski, S.P. Berglund, C. Li, H. He, G. Shi, C.B. Mullins, A.C.S. Appl, Mater. Interfaces 6(8), 5494–5499 (2014)

    CAS  Google Scholar 

  27. L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Am. J. Mater. Sci. 2(2), 6–10 (2012)

    Google Scholar 

  28. Y. Yang, X. Zhao, H.E. Wang, M. Li, C. Hao, M. Ji, G. Cao, J. Mater. Chem. A. 6(8), 3479–3487 (2018)

    CAS  Google Scholar 

  29. M. Zhao, Q. Zhao, J. Qiu, H. Xue, H. Pang, RSC Adv. 6(101), 99178–99178 (2016)

    CAS  Google Scholar 

  30. Z. He, J. Zhou, B. Mod, Res. Catal. 2, 13–18 (2013)

    CAS  Google Scholar 

  31. T.T. Bhosale, H.M. Shinde, N.L. Gavade, S.B. Babar, V.V. Gawade, S.R. Sabale, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 29, 6826–6834 (2018)

    CAS  Google Scholar 

  32. K. Bouras, J.L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, A. Slaoui, J. Mater. Chem. C. 2(39), 8235–8243 (2014)

    CAS  Google Scholar 

  33. A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5(49), 39193–39204 (2015)

    CAS  Google Scholar 

  34. W.W. Wang, Y.J. Zhu, L.X. Yang, Adv. Funct. Mater. 17(1), 59–64 (2007)

    Google Scholar 

  35. M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Hu, Mater. Lett. 59(28), 3641–3644 (2005)

    CAS  Google Scholar 

  36. K. Wongsaprom, R.A. Bornphotsawatkun, E. Swatsitang, Appl. Phys. A 114, 373–379 (2014)

    CAS  Google Scholar 

  37. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, Mater. Res. Express 6(8), 0850i3 (2019)

    CAS  Google Scholar 

  38. E. Duraisamy, H.T. Das, A.S. Sharma, P. Elumalai, New J. Chem. 42(8), 6114–6124 (2018)

    CAS  Google Scholar 

  39. H. Chen, L. Ding, W. Sun, Q. Jiang, J. Hu, J. Li, RSC Adv. 5(69), 56401–56409 (2015)

    CAS  Google Scholar 

  40. Y. Dong, Z. Zhao, Z. Wang, Y. Liu, X. Wang, J. Qiu, A.C.S. Appl, Mater. Interfaces 7(4), 2444–2451 (2015)

    CAS  Google Scholar 

  41. J. Gajendiran, V. Rajendran, Mater. Lett. 139, 116–118 (2015)

    CAS  Google Scholar 

  42. B. Saravanakumar, G. Ravi, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, J. Sol-Gel Sci. Technol. 86, 521–535 (2018)

    CAS  Google Scholar 

  43. J. Mayandi, M. Marikkannan, V. Ragavendran, P. Jayabal, J. Nanosci. Nanotechnol. 2, 707–710 (2014)

    Google Scholar 

  44. S. Sivakumar, N.A. Mala, K.M. Batoo, M.F. Ijaz, Inorg. Chem. Commun. 134, 108959 (2021)

    CAS  Google Scholar 

  45. W. Xia, H. Wang, X. Zeng, J. Han, J. Zhu, M. Zhou, S. Wu, CrystEngComm 16(30), 6841–6847 (2014)

    CAS  Google Scholar 

  46. S.Y. Turishchev, O.A. Chuvenkova, E.V. Parinova, D.A. Koyuda, R.G. Chumakov, M. Presselt, A. Schleusener, V. Sivakov, Results Phys. 11, 507–509 (2018)

    Google Scholar 

  47. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, J. Phys. Chem. Solids 141, 109407 (2020)

    CAS  Google Scholar 

  48. N.A. Mala, R.N. Ali, S. Hussain, S.M. Ibrahim, N. Ullah, S. Husain, Z. Ahmad, Int. J. Hydrogen Energy 48(84), 32739–32755 (2023)

    CAS  Google Scholar 

  49. M.K. Song, S. Cheng, H. Chen, W. Qin, K.W. Nam, S. Xu, M. Liu, Nano Lett. 12(7), 3483–3490 (2012)

    CAS  PubMed  Google Scholar 

  50. R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, ACS Nano 11(6), 5293–5308 (2017)

    CAS  PubMed  Google Scholar 

  51. S. Guo, H. Shen, Z. Tie, S. Zhu, P. Shi, J. Fan, Y. Min, J. Power. Sour. 359, 285–294 (2017)

    CAS  Google Scholar 

  52. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, J. Mater. Sci. Mater. Electron. 30, 13174–13190 (2019)

    CAS  Google Scholar 

  53. P. Asen, M. Haghighi, S. Shahrokhian, N. Taghavinia, J. Alloys Compd. 782, 38–50 (2019)

    CAS  Google Scholar 

  54. S.G. Krishnan, M.V. Reddy, M. Harilal, B. Vidyadharan, I.I. Misnon, M.H. Ab Rahim, R. Jose, Electrochim. Acta 161, 312–321 (2015)

    CAS  Google Scholar 

  55. R. Weber, A.J. Louli, K.P. Plucknett, J.R. Dahn, J. Electrochem. Soc. 166(10), A1779 (2019)

    CAS  Google Scholar 

  56. H.S. Magar, R.Y. Hassan, A. Mulchandani, Sensors. 21(19), 6578 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Researchers Supporting Project Number RSPD2024R993, at King Saud University, Saudi Arabia, for the financial support.

Funding

This work has been financially supported by Research Supporting Project Number RSPD2024R993 at King Saud University.

Author information

Authors and Affiliations

Authors

Contributions

Dr. N A Mala and Dr. M D Rather contributed to methodology, validation, conceptualization, formal analysis, visualization, writing of the original draft, and writing, reviewing, & editing of the manuscript; Dr. RNA, Dr. KMB, Dr. SH, Dr. ZA, Dr. Md. YB Dr. IB and Dr. AI contributed to formal analysis, reviewing, & editing of the manuscript.

Corresponding author

Correspondence to Nazir Ahmad Mala.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mala, N.A., Rather, M.u.D., Ali, R.N. et al. Surfactant assisted-SnO2 nanorods and nanoflowers synthesised by hydrothermal method for supercapacitor applications. J Mater Sci: Mater Electron 35, 774 (2024). https://doi.org/10.1007/s10854-024-12531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12531-6

Navigation