Skip to main content
Log in

Impression Creep of a Lead-Free Sn-1.7Sb-1.5Ag Solder Reinforced by Submicron-Size Al2O3 Particles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present study, the Sn-1.7Sb-1.5Ag solder alloy and the same material reinforced with 5 vol.% of 0.3-μm Al2O3 particles were synthesized using the powder metallurgy route of blending, compaction, sintering, and extrusion. The impression creep behavior of both monolithic and composite solders was studied under a constant punching stress in the range of 20 MPa to 110 MPa, at temperatures in the range of 320 K to 430 K. The creep resistance of the composite solder was higher than that of the monolithic alloy at all applied stresses and temperatures, as indicated by their corresponding minimum creep rates. This was attributed to the dispersive distribution of the submicron-sized Al2O3 particles in the composite solder. Assuming a power-law relationship between the impression stress and velocity, average stress exponents of 5.3 to 5.6 and 5.8 to 5.9 were obtained for the monolithic and composite materials, respectively. Analysis of the data showed that, for all loads and temperatures, the activation energy for both materials was almost stress independent, with average values of 44.0 kJ mol−1 and 41.6 kJ mol−1 for the monolithic and composite solders, respectively. These activation energies are close to the value of 46 kJ mol−1 for dislocation climb, assisted by vacancy diffusion through dislocation cores in the Sn. This, together with the stress exponents of about 5 to 5.9, suggests that the operative creep mechanism is dislocation viscous glide controlled by dislocation pipe diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. Rep. 27, 95 (2000). doi:10.1016/S0927-796X(00)00010-3.

    Article  Google Scholar 

  2. A.R. Geranmayeh and R. Mahmudi, J. Electron. Mater. 34, 1002 (2005). doi:10.1007/s11664-005-0087-4.

    Article  CAS  ADS  Google Scholar 

  3. K.L. Murty, F.M. Haggag, and R.K. Mahidhara, J. Electron. Mater. 26, 839 (1997).

    Article  CAS  ADS  Google Scholar 

  4. R.J. McCabe and M.E. Fine, J. Electron. Mater. 31, 1276 (2002).

    Article  CAS  ADS  Google Scholar 

  5. H. Rhee, K.N. Subramanian, A. Lee, and G. Lee, Solder. Surface Mount Technol. 15, 21 (2003).

    Article  CAS  Google Scholar 

  6. X. Deng, R.S. Sidhu, P. Johnson, and N. Chawala, Metall. Mater. Trans. 36A, 55 (2005).

    Article  CAS  Google Scholar 

  7. R.K. Shiue, L.W. Tsay, C.L. Lin, and J.L. Ou, J. Mater. Sci. 38, 1269 (2003).

    Article  CAS  Google Scholar 

  8. D. Mitlin, C.H. Raeder, and R.W. Messler, Metall. Mater. Trans. 30A, 115 (1999). doi:10.1007/s11661-999-0199-1.

    Article  CAS  Google Scholar 

  9. F. Guo, J.P. Lucas, and K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 12, 27 (2000).

    Article  Google Scholar 

  10. F. Guo, J. Lee, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, J. Electron. Mater. 30, 1222 (2001).

    Article  CAS  ADS  Google Scholar 

  11. F. Guo, J. Lee, and K.N. Subramanian, Solder. Surf. Mount Technol. 15, 39 (2003). doi:10.1108/09540910310455716.

    Article  CAS  Google Scholar 

  12. F. Guo, J. Mater. Sci.: Mater. Electron. 18, 129 (2007). doi:10.1007/s10854-006-9019-1.

    Article  CAS  Google Scholar 

  13. P.K. Muthur Srinath and P.B. Aswath, J. Mater. Sci. 42, 7592 (2007). doi:10.1007/s10853-006-1326-7.

    Article  ADS  Google Scholar 

  14. Y. Shi, J. Liu, Y. Yan, Z. Xia, Y. Lei, F. Guo, and X. Li, J. Electron. Mater. 37, 507 (2008). doi:10.1007/s11664-007-0208-3.

    Article  CAS  ADS  Google Scholar 

  15. H. Mavoori and S. Jin, J. Electron. Mater. 27, 1216 (1998).

    Article  CAS  ADS  Google Scholar 

  16. Y. Shi, J. Liu, Z. Xia, Y. Lei, F. Guo, and X. Li, J Mater Sci: Mater Electron. 19, 349 (2008). doi:10.1007/s10854-007-9327-0.

    Article  CAS  Google Scholar 

  17. A. Rezaee-Bazzaz and R. Mahmudi, Mater. Sci. Technol. 21, 861 (2005). doi:10.1179/174328405X46079.

    Article  CAS  Google Scholar 

  18. R. Mahmudi, A.R. Geranmayeh, H. Noori, N. Jahangiri, and H. Khanbareh, Mater. Sci. Eng. A 487, 20 (2008). doi:10.1016/j.msea.2007.09.050.

    Article  Google Scholar 

  19. R. Mahmudi, A.R. Geranmayeh, H. Noori, and M. Taghaddosi, J. Electron. Mater. 38, 330 (2009). doi:10.1007/s11664-008-0576-3.

    Article  CAS  ADS  Google Scholar 

  20. D.H. Sastry, Mater. Sci. Eng. A409, 67 (2005). doi:10.1016/j.msea.2005.05.110.

    CAS  Google Scholar 

  21. F. Tai, F. Guo, Z.D. Xia, Y.P. Lei, Y.F. Yan, J.P. Liu, and Y.W. Shi, J. Electron. Mater. 34, 1357 (2005).

    Article  CAS  ADS  Google Scholar 

  22. S.G. Jadhav, T.R. Bieler, K.N. Subramanian, and J.P. Lucas, J. Electron. Mater. 30, 1197 (2001).

    Article  CAS  ADS  Google Scholar 

  23. R. Schmid-Fetzer, L. Rokhlin, E. Lysova, and M. Zinkevich, Noble Metal Ternary Systems: Phase Diagrams, Crystallographic and Thermodynamic Data (Berlin: Springer, 2006), pp. 181–186. doi:10.1007/b96200.

    Google Scholar 

  24. R. Mahmudi, A.R. Geranmayeh, and A. Rezaee-Bazzaz, Mater. Sci. Eng. A 448, 287 (2007). doi:10.1016/j.msea.2006.10.092.

    Article  Google Scholar 

  25. Z.X. Li and M. Gupta, Adv. Eng. Mater. 7, 1049 (2005). doi:10.1002/adem.200500109.

    Article  CAS  Google Scholar 

  26. S.N.G. Chu and J.C.M. Li, J. Mater. Sci. 12, 2200 (1977). doi:10.1007/BF00552241.

    Article  CAS  ADS  Google Scholar 

  27. A. Juhasz, P. Tasnadi, P. Szasvari, and I. Kovacs, J. Mater. Sci. 21, 3287 (1986). doi:10.1007/BF00553371.

    Article  CAS  ADS  Google Scholar 

  28. L. Rotherham, A.D.N. Smith, and G.B. Greenough, J. Inst. Met. 79, 439 (1951).

    CAS  Google Scholar 

  29. R.J. McCabe and M.E. Fine, JOM 52, 33 (2000).

    Article  CAS  Google Scholar 

  30. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. A 36, 99 (2005). doi:10.1007/s11661-005-0142-z.

    Article  Google Scholar 

  31. T. Reinikainen and J. Kivilahti, Metall. Mater. Trans. A 30, 123 (1999). doi:10.1007/s11661-999-0200-z.

    Article  Google Scholar 

  32. O.D. Sherby and P.M. Burke, Prog. Mater. Sci. 1, 325 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kangooie, M., Mahmudi, R. & Geranmayeh, A. Impression Creep of a Lead-Free Sn-1.7Sb-1.5Ag Solder Reinforced by Submicron-Size Al2O3 Particles. J. Electron. Mater. 39, 215–222 (2010). https://doi.org/10.1007/s11664-009-0971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0971-4

Keywords

Navigation