Skip to main content
Log in

Structural and Optical Characterizations of Electrochemically Grown Connected and Free-Standing TiO2 Nanotube Array

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A TiO2 nanotube array was grown electrochemically by using single and mixed electrolyte/s with 20 V constant potential at room temperature. Anodization was carried out for 120 min using five different electrolytes, e.g., H3PO4, NH4F, HF, NH4F with H3PO4 and HF with H3PO4. Structural characterizations of the grown titania nanotubes were conducted by using x-ray diffraction and field emission scanning electron microscopy. Optical properties of the grown nanotubes were investigated through photoluminescence (PL) spectroscopy. In the case of the 4 M H3PO4 electrolyte, no perceptible growth of nanotubes was observed. The individual electrolytes of 0.3 M NH4F and 1 M HF resulted into the formation of the wall-connected nanotubes. In contrast, the mixed electrolytes comprising the strong (NH4F, HF) and weak (H3PO4) electrolytes have been found to be efficient for the growth of wall-separated titania nanotubes. The results of the PL spectroscopy have demonstrated that the free-standing nanotubes offer low PL intensity compared to its connected counterpart owing to the lower carrier recombination rate of free-standing nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Macak and P. Schmuki, Electrochim. Acta 52, 1258 (2006).

    Article  Google Scholar 

  2. J. Choi, R.B. Wehrspohn, J. Lee, and U. Gösele, Electrochim. Acta 49, 2645 (2004).

    Article  Google Scholar 

  3. E. Krasicka-Cydzik, Biomater. Eng. 7–8, 26 (1999).

    Google Scholar 

  4. G. Liu, K. Wang, N. Hoivik, and H. Jakobsen, Sol. Energy Mater. Sol. Cells 98, 24 (2012).

    Article  Google Scholar 

  5. R. Liu, W.-D. Yang, L.-S. Qiang, and J.F. Wu, Thin Solid Films 519, 6459 (2011).

    Article  Google Scholar 

  6. H. Yanga and C. Pan, J. Alloy. Compd. 492, L33 (2010).

    Article  Google Scholar 

  7. F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, and H. Liu, Plasmonics 8, 501 (2013).

    Article  Google Scholar 

  8. V.C. Anitha, D. Menon, S.V. Nair, and R. Prasanth, Electrochim. Acta 55, 3703 (2010).

    Article  Google Scholar 

  9. K.S. Raja, M. Misra, and K. Paramguru, Electrochim. Acta 51, 154 (2005).

    Article  Google Scholar 

  10. R.P. Antony, T. Mathews, A. Dasgupta, S. Dash, A.K. Tyagi, and B. Raj, J. Solid State Chem. 184, 624 (2011).

    Article  Google Scholar 

  11. S.K. Hazra and S. Basu, Sens. Actuators B 115, 403 (2006).

    Article  Google Scholar 

  12. J.M. Macak, K. Sirotna, and P. Schmuki, Electrochim. Acta 50, 3679 (2005).

    Article  Google Scholar 

  13. R.P. Antony, T. Mathews, C. Ramesh, N. Murugesan, A. Dasgupta, S. Dhara, S. Dash, and A.K. Tyagi, Int. J. Hydrogen Energy 37, 8268 (2012).

    Article  Google Scholar 

  14. F.T. Cheng, P. Shi, G.K.H. Pang, M.H. Wong, and H.C. Man, J. Alloy. Compd. 438, 238 (2007).

    Article  Google Scholar 

  15. O. Sanz, F.J. Echave, J.A. Odriozola, and M. Montes, Ind. Eng. Chem. Res. 50, 2117 (2011).

    Article  Google Scholar 

  16. M.K. Jackson and W. Ahmed, Surface Engineered Surgical tools and Medical Device (New York: Springer Science, 2007), pp. 21–47.

    Book  Google Scholar 

  17. H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, and P. Schmuki, Electrochem. Commun. 7, 576 (2005).

    Article  Google Scholar 

  18. A. Hazra, B. Bhowmik, K. Dutta, V. Manjuladevi, R.K. Gupta, P.P. Chattopadhyay, and P. Bhattacharyya, Sci. Adv. Mater. 6, 714 (2014).

    Article  Google Scholar 

  19. K. Iijima, M. Goto, S. Enomoto, H. Kunugita, K. Ema, M. Tsukamoto, N. Ichikawa, and H. Sakama, J. Lumin. 128, 911 (2008).

    Article  Google Scholar 

  20. S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, and C. Wen, Acta Biomater. 8, 2875 (2012).

    Article  Google Scholar 

  21. R.A. Antunes, M.C.L. de Oliveira, and M.F. Pillis, Int. J.␣Electrochem. Sci. 8, 1487 (2013).

    Google Scholar 

  22. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007).

    Article  Google Scholar 

  23. A. Janotti, J.B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C.G. Van de Walle, Phys. Rev. B 81, 085212 (2010).

    Article  Google Scholar 

  24. A.G. Mantzila and M.I. Prodromidis, Electrochim. Acta 51, 3537 (2006).

    Article  Google Scholar 

  25. J. Marsh and D. Gorse, Electrochim. Acta 43, 659 (1998).

    Article  Google Scholar 

  26. S. Sreekantan, K.A. Saharudin, Z. Lockman, and T.W. Tzu, Nanotechnology 21, 365603 (2010).

    Article  Google Scholar 

  27. L.Z. Liu, W. Xu, X.L. Wu, Y.Y. Zhang, T.H. Chen, and P.K. Chu, Appl. Phys. Lett. 100, 121904 (2012).

    Article  Google Scholar 

  28. B. Choudhury and A. Choudhury, J. Lumin. 132, 178 (2012).

    Article  Google Scholar 

  29. A. Peng, E. Xie, C. Jia, R. Jiang, and H. Lin, Mater. Lett. 59, 3866 (2005).

    Article  Google Scholar 

  30. P.J. Dihingia and S. Rai, J. Lumin. 132, 1243 (2012).

    Article  Google Scholar 

  31. M. Yang, W. Liu, J.-L. Sun, and J.-L. Zhu, Appl. Phys. Lett. 100, 043106 (2012).

    Article  Google Scholar 

  32. M. Watanabe and T. Hayashi, J. Lumin. 112, 88 (2005).

    Article  Google Scholar 

  33. Y. Yang, X. Wang, C. Sun, and L. Li, J. Appl. Phys. 105, 094304 (2009).

    Article  Google Scholar 

  34. I. Sildos, A. Suisalu, J. Aarik, T. Sekiya, and S. Kurita, J.␣Lumin. 87, 290 (2000).

    Article  Google Scholar 

  35. N. Han, F. Wang, and J.C. Ho, Nanomater. Energy (2011). doi:10.1680/nme.11.00005.

Download references

Acknowledgements

This work was supported in part by CSIR (Sanction letter No. 22(0518)/10/EMR-II), Department of Science and Technology (Fast Track Scheme for Young Scientist: Sanction Letter No. SR/FTP/ETA-041/2011), AICTE Career Award for Young Teachers (Sanction letter No. 1-51/RIFD/CA/1/2011-12), Government of India and Indian National Science Academy (INSA) (Sanction letter No. SP/YSP/81/2013/735). A. Hazra gratefully acknowledges the Department of Science and Technology (DST), Govt. of India for providing INSPIRE Fellowship for pursuing his PhD degree. K. Dutta and B. Bhowmik gratefully acknowledge COE, TEQIP—II, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, for their fellowship for pursuing PhD programme. Authors from BITS Pilani acknowledge UGC and DST, India, for their support. The authors sincerely acknowledge Dr. Mallar Ray, School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, India, for providing the facility of PL spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, A., Dutta, K., Bhowmik, B. et al. Structural and Optical Characterizations of Electrochemically Grown Connected and Free-Standing TiO2 Nanotube Array. J. Electron. Mater. 43, 3229–3235 (2014). https://doi.org/10.1007/s11664-014-3183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3183-5

Keywords

Navigation