Skip to main content
Log in

Photocatalytic Activity of Ag/TiO2 Nanotube Arrays Enhanced by Surface Plasmon Resonance and Application in Hydrogen Evolution by Water Splitting

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

TiO2 nanotube arrays (TiO2 NTs) were fabricated by anodic oxidation and then Ag nanoparticles (Ag NPs) were assembled in TiO2 NTs (Ag/TiO2 NTs) by microwave-assisted chemical reduction. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence spectrum (PL), UV–vis absorption spectrum (UV–vis), and Raman spectrum, respectively. The results showed that Ag NPs were well dispersed on the surface of TiO2 NTs with metallic state. The surface plasmon resonance (SPR) effect of Ag NPs could extend the visible light response and enhance the absorption capacity of TiO2. Furthermore, Ag NPs could also restrain the recombination of photo-generated electron–hole pairs of TiO2 NTs efficiently. The methylene blue photodegradation experiment proved that the SPR phenomenon had an effect on photoreaction enhancement. The results of photocatalytic water splitting indicated that Ag/TiO2 NTs samples had better photocatalytic performance than pure TiO2 NTs. The corresponding hydrogen evolution rate of Ag/TiO2 NTs prepared with 0.002 M AgNO3 solution was 3.3 times as that of pure TiO2 NTs in the test condition. Additionally, the mechanism of catalyst activity enhanced by SPR effect was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee J, Jho JY (2011) Sol Energy Mater Sol Cells 95:3152–3156. doi:10.1016/j.solmat.2011.06.046

    CAS  Google Scholar 

  2. Park H, Kim WR, Jeong HT, Lee JJ, Kim HG, Choi WY (2011) Sol Energy Mater Sol Cells 95:184–189. doi:10.1016/j.solmat.2010.02.017

    Article  CAS  Google Scholar 

  3. Park JH, Kim JY, Kim JH, Choi CJ, Kim H, Sung YE, Ahn KS (2011) J Power Sources 196:8904–8908. doi:10.1016/j.jpowsour.2011.06.063

    Article  CAS  Google Scholar 

  4. Lu N, Zhao H, Li J, Quan X, Chen S (2008) Sep Purif Technol 62:668–673. doi:10.1016/j.seppur.2008.03.021

    Article  CAS  Google Scholar 

  5. Quan X, Ruan X, Zhao H, Chen S, Zhao Y (2007) Environ Pollut 147:409–414. doi:10.1016/j.envpol.2006.05.023

    Article  CAS  Google Scholar 

  6. Xu J, Ao Y, Chen M, Fu D (2010) Appl Surf Sci 256:4397–4401. doi:10.1016/j.apsusc.2010.02.037

    Article  CAS  Google Scholar 

  7. Wender H, Feil AF, Diaz LB, Riberio CS, Machado GJ, Migowski P, Weibel DE, Dupont J, Teixera SR (2011) ACS Appl Mater Interfaces 3:1359–1365. doi:10.1021/la9020146

    Article  CAS  Google Scholar 

  8. Meng Q, Wang J, Xie Q, Dong H, Li X (2011) Catal Today 165:145–149. doi:10.1016/j.cattod.2010.11.086

    Article  CAS  Google Scholar 

  9. Sun Y, Wang G, Yan K (2011) Int J Hydrogen Energy 36:15502–15508. doi:10.1016/j.ijhydene.2011.08.112

    Article  CAS  Google Scholar 

  10. Lin S, Li D, Wu J, Li X, Akbar SA (2011) Sens Actuators 156:505–509. doi:10.1016/j.snb.2011.02.046

    Article  CAS  Google Scholar 

  11. Galstyan V, Comini E, Faglia G, Vomiero A, Brisotto M, Bontempi E, Sberveglieri G (2011) Procedia Eng 25:757–760. doi:10.1016/j.proeng.2011.12.186

    Article  CAS  Google Scholar 

  12. Li J, Lu N, Quan X, Chen S, Zhao H (2008) Ind Eng Chem Res 47:3804–3808. doi:10.1021/ie0712028

    Article  CAS  Google Scholar 

  13. Lai Y, Huang J, Zhang H, Subramaniam VP, Tang Y, Gong DG, Sundar L, Sun L, Chen Z, Lin C (2010) J Hazard Mater 184:855–863. doi:10.1016/j.jhazmat.2010.08.121

    Article  CAS  Google Scholar 

  14. Su Y, Chen S, Quan X, Zhang Y (2008) Appl Surf Sci 255:2167–2172. doi:10.1016/j.apsusc.2008.07.053

    Article  CAS  Google Scholar 

  15. Zhang J, Tang C, Bang J (2010) Electrochem Commun 12:1124–1128. doi:10.1016/j.elecom.2010.05.046

    Article  CAS  Google Scholar 

  16. Shin K, Seok S, Im SH, Park JH (2010) Chem Commun 46:2385–2387. doi:10.1039/B923022J

    Article  CAS  Google Scholar 

  17. Kang Q, Liu S, Yang L, Cai Q, Grimes CA (2011) ACS Appl Mater Interfaces 3:746–749. doi:10.1021/am101086t

    Article  CAS  Google Scholar 

  18. Paramasivam I, Macak JM, Schmuki P (2008) Electrochem Commun 10:71–75. doi:10.1016/j.elecom.2007.11.001

    Article  CAS  Google Scholar 

  19. Liang Y, Wang C, Kei CC, Hsueh YC, Cho WH, Perng TP (2011) J Phys Chem C 115:9498–9502. doi:10.1021/jp202111p

    Article  CAS  Google Scholar 

  20. Song Y, Gao Z, Schmuki P (2011) Electrochem Commun 13:290–293. doi:10.1016/j.elecom.2011.01.006

    Article  CAS  Google Scholar 

  21. Logar M, Jančar B, Šturm S, Suvorov D (2010) Langmuir 26:12215–12224. doi:10.1021/la101124q

    Article  CAS  Google Scholar 

  22. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) J Am Chem Soc 130:1676–1680. doi:10.1021/ja076503n

    Article  CAS  Google Scholar 

  23. Christopher P, Ingram DB, Linic S (2010) J Phys Chem C 114:9173–9177. doi:10.1021/jp101633u

    Article  CAS  Google Scholar 

  24. Chen JJ, Wu JCS J, Wu PC, Tsai DP (2011) J Phys Chem C 115:210–216. doi:10.1021/jp1074048

    Article  CAS  Google Scholar 

  25. Yu J, Dai G, Huang B (2009) J Phys Chem C 113:16394–16401. doi:10.1021/jp905247j

    Article  CAS  Google Scholar 

  26. Naya S, Inoue A, Tada H (2010) J Am Chem Soc 132:6292–6293. doi:10.1021/ja101711j

    Article  CAS  Google Scholar 

  27. Periyat P, Leyland N, McCormack DE, Colreavy J, Corr D, Pillai SC (2010) J Mater Chem 20:3650–3655. doi:10.1039/B924341K

    Article  CAS  Google Scholar 

  28. Liang Y, Cui Z, Zhu S, Liu Y, Yang X (2011) J Catal 278:276–287. doi:10.1016/j.jcat.2010.12.011

    Article  CAS  Google Scholar 

  29. Zhou J, Zhang Y, Zhao X, Ray AK (2006) Ind Eng Chem Res 45:3503. doi:10.1021/ie051098z

    Article  CAS  Google Scholar 

  30. Sun L, Li J, Wang C, Li S, Lai Y, Chen H, Lin C (2008) J Hazard Mater 171:1045–1050. doi:10.1016/j.jhazmat.2009.06.115

    Article  Google Scholar 

  31. Amendola V, Bakr OM, Stellacci F (2010) Plasmonics 5:85–97. doi:10.1007/s11468-009-9120-4

    Article  CAS  Google Scholar 

  32. Wang C, Liu C, Liu Y, Zhang Z (1999) Appl Surf Sci 147:52–57. doi:10.1016/S0169-4332(99)00117-8

    Article  CAS  Google Scholar 

  33. Zhou Y, Wang C, Liu H (1999) Mater Sci Eng B 67:95–98. doi:10.1016/S0921-5107(99)00316-5

    Article  Google Scholar 

  34. Yang Y, Chang C, Idriss H (2006) Appl Catal B: Environ 67:217–222. doi:10.1016/j.apcatb.2006.05.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the National Natural Science Foundation of China (No.21176199), the Research Fund for the Doctoral Program of Higher Education (No.20096101110013), and the Natural Science Foundation of Shannxi Province (No.2010JZ002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F., Hu, X., Fan, J. et al. Photocatalytic Activity of Ag/TiO2 Nanotube Arrays Enhanced by Surface Plasmon Resonance and Application in Hydrogen Evolution by Water Splitting. Plasmonics 8, 501–508 (2013). https://doi.org/10.1007/s11468-012-9418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9418-5

Keywords

Navigation