Skip to main content
Log in

Estimation Method for Liquidus Temperature of Lead-Free Solder Using Differential Scanning Calorimetry Profiles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

It is usually complicated to analyze the liquidus temperature of lead-free solder, because unlike Sn-Pb eutectic solder, supercooling easily occurs during the cooling process of lead-free solder, and common lead-free solders contain only a small fraction of a primary phase. In order to determine the melting temperature range of lead-free solder easily, an estimation method using differential scanning calorimetry (DSC) profiles is proposed. The purpose of this study is to show the applicability of the newly proposed DSC-based approach. DSC profiles using several heating rates were measured and analyzed. As a result, it was found that the extrapolated onset temperature, the peak temperature, and the extrapolated end temperature of the endothermic peak were proportional to the square root of the DSC heating rate. For lower heating rate, the temperature–axis intercept of the relationship between the square root of the heating rate and the peak temperature can be regarded as the liquidus temperature under equilibrium conditions with better accuracy. For higher heating rate, the temperature–axis intercept of the relationship between the square root of the heating rate and the extrapolated end temperature can be approximately estimated as the liquidus temperature of noneutectic lead-free solder under equilibrium conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Takemoto and M. Miyazaki, Mater. Trans. 42, 745 (2001).

    Article  CAS  Google Scholar 

  2. S.H. Huh, K.S. Kim, and K. Suganuma, Mater. Trans. 42, 739 (2001).

    Article  CAS  Google Scholar 

  3. S.W. Chen and Y.W. Yen, J. Electron. Mater. 30, 1133 (2001).

    Article  CAS  ADS  Google Scholar 

  4. J.W. Yoon and S.B. Jung, J. Alloys Compd. 359, 202 (2003).

    Article  CAS  Google Scholar 

  5. S.T. Kao, Y.C. Lin, and J.G. Duh, J. Electron. Mater. 35, 302 (2006).

    Article  Google Scholar 

  6. H. Nishikawa, A. Komatsu, and T. Takemoto, J. Electron. Mater. 36, 1137 (2007).

    Article  CAS  ADS  Google Scholar 

  7. F. Gao, H. Nishikawa, and T. Takemoto, J. Electron. Mater. 37, 45 (2008).

    Article  CAS  ADS  Google Scholar 

  8. H.F. Hsu and S.W. Chen, Acta Mater. 52, 2541 (2004).

    Article  CAS  Google Scholar 

  9. C. Chou and S.W. Chen, Acta Mater. 54, 2393 (2006).

    Article  CAS  Google Scholar 

  10. C. Schmetterer, H. Flandorfer, and H. Ipser, Acta Mater. 56, 155 (2008).

    Article  CAS  Google Scholar 

  11. S.-W. Chen and C.-C. Huang, Chem. Eng. Sci. 50, 417 (1995).

    Article  CAS  Google Scholar 

  12. M.F. Fleszar, Thermochim. Acta 367–368, 273 (2001).

    Article  Google Scholar 

  13. V.J. Kuch, Thermochim. Acta 99, 233 (1986).

    Article  Google Scholar 

  14. R.P. Anjard, Microelectron. Reliab. 25, 9 (1985).

    Article  Google Scholar 

  15. C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater. 23, 595 (1994).

    Article  CAS  ADS  Google Scholar 

  16. I. Ohnuma, M. Miyashita, K. Anzai, X.J. Liu, H. Ohtani, R. Kainuma, and K. Ishida, J. Electron. Mater. 29, 1137 (2000).

    Article  CAS  ADS  Google Scholar 

  17. M.E. Loomans and M.E. Fine, Metall. Mater. Trans. A 31, 1155 (2000).

    Article  Google Scholar 

  18. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  ADS  Google Scholar 

  19. Japanese Industrial Standard: JIS Z 3198-1:2003.

  20. W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, National Institute of Standards and Technology, Special Publication 960-15 (2006).

  21. H.P. Thomas, Metrologia 27, 3 (1990).

    Article  ADS  Google Scholar 

  22. R.E. Bedford, G. Bonnier, H. Maas, and F. Pavese, Metrologia 33, 133 (1996).

    Article  ADS  Google Scholar 

  23. International Standard: ISO 9543:2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikawa, H., Hamada, Y. & Takemoto, T. Estimation Method for Liquidus Temperature of Lead-Free Solder Using Differential Scanning Calorimetry Profiles. J. Electron. Mater. 38, 2610–2616 (2009). https://doi.org/10.1007/s11664-009-0921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0921-1

Keywords

Navigation