Skip to main content
Log in

Anisotropic Crystal Plasticity Finite Element Modeling of the Effect of Crystal Orientation and Solder Joint Geometry on Deformation after Temperature Change

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The crystal orientation of the tin phase in a Pb-free Sn solder joint has a significant effect on the stress state, and hence on the reliability of the solder joint. A set of crystal plasticity analyses was used to evaluate stress and strain resulting from a 165°C temperature change in a single-crystal joint using two simplified geometries used in practical solder joints. Phenomenological flow models for ten slip systems were estimated based upon semiquantitative information available in the literature, along with known anisotropic elastic property information. The results show that the internal energy of the system is a strong function of the tin crystal orientation and geometry of the solder joint. The internal energy (and presumably the likelihood of damage) is highest when the crystal c-axis lies in the plane of the substrate, leading to significant plastic deformation. When the a-axis is in the plane of the interface, deformation due to a 165°C temperature change is predominantly elastic. The texture of the copper substrate using isotropic Cu elastic properties, or anisotropic elastic properties with [001] \( \parallel \) substrate normal direction, does␣not have a significant effect on the stress or strain in the Sn phase of the joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kerr, N. Chawla, Acta Mater. 52 (2004) 4527

    Article  CAS  Google Scholar 

  2. Guo F, Choi S, Subramanian KN, Bieler TR, Lucas JP, Achari A, Paruchuri M, Mater. Sci. & Engr. A 351 (2003) 190

    Article  Google Scholar 

  3. Choi S, Lee J, Guo F, Bieler TR, Subramanian KN, and Lucas JP, JOM 53(6) (2001) 22

    Article  CAS  Google Scholar 

  4. Wu CML, Yu DQ, Law CMT, Wang L R Mater. Sci. & Engr. R 44 (2004) 1

    Article  Google Scholar 

  5. Amagai M, Watanabe M, Omiya M, Kishimoto K, Shibuya T, Microelectronics Reliability, 42 (2002) 951

    Article  Google Scholar 

  6. Telang AU, Bieler TR, Mason DE, and Subramanian KN, J. Electron Mater., 32 (2003) 1455

    Article  ADS  CAS  Google Scholar 

  7. Anderson IE, Harringa JL, J. Electronic Mater 33 (2004) 1485

    Article  ADS  CAS  Google Scholar 

  8. Zhao Y, Miyashita Y, Mutoh Y, International J. Fatigue 23 (2001) 723

    Article  CAS  Google Scholar 

  9. Yoon JW, Jung SB, J. Mater Sci 39 (2004) 4211

    Article  CAS  Google Scholar 

  10. Terashima S, Tanaka M, Mater. Trans. 45 (2004) 681

    Article  CAS  Google Scholar 

  11. Kanchanomai C, Mutoh Y, Mater. Sci. & Engr. A 381 (2004) 113

    Article  Google Scholar 

  12. Zeng QL, Wang ZG, Xian AP, Shang JK, J. Electronic Materials 34 (2005) 62

    Article  ADS  CAS  Google Scholar 

  13. Lee JG, Guo F, Choi S, Subramanian KN, Bieler TR and Lucas JP, J. Electronic Materials 31 (2002) 946

    Article  ADS  CAS  Google Scholar 

  14. Kato H, Matsubara K, Kageyama K, Mater. Sci. Tech. 19 (2003) 1403

    Article  CAS  Google Scholar 

  15. Terashima S, Kariya Y, Hosoi T, Tanaka MJ, Electr. Mater. 32 (2003) 1527

    Article  ADS  CAS  Google Scholar 

  16. Shen Y-L, Chawla N, Ege ES, Deng X. Acta Materialia 53, 2633–2642. (2005)

    Article  CAS  Google Scholar 

  17. Ahmad M, Hubbard K, Hu M, J. Electronic Packaging 127, 290–98, (2005).

    Article  Google Scholar 

  18. Sidhu RS, Chawla N, Metallurgical and Materials Transactions 39A(4) 799–810, (2008).

    Article  CAS  Google Scholar 

  19. Ye H, Basaran C, Hopkins DC. International Journal of Damage Mechanics 2006, 15(1), 41–67

    Article  CAS  Google Scholar 

  20. Dreyer W, Muller WH. International Journal of Solids and Structures 2001, 38,1433–1458.

    Article  MATH  Google Scholar 

  21. Lee TY, Tu KN, Kuo SM, Frear DR. J. App. Phy. 2001, 90, 4502–4508.

    Article  ADS  CAS  Google Scholar 

  22. R. Darveaux, Design and Reliability of Solders and Solder␣Interconnections (Warrendale, PA: TMS, 1997), pp. 213–218.

  23. H. Solomon, ASME J. Electron. Pack., 113 (1991).

  24. Kang SK, Shih DY, Leonard D, Henderson DW, Gosselin T, Cho SI, Yu J, Choi WK, JOM 56(6), 34–38 (2004).

    Article  CAS  Google Scholar 

  25. Lu HY, Balkan H, Ng KYS, J Mater Sci, Mater Electron 17, 171–188 (2006).

    Article  CAS  Google Scholar 

  26. Takaku Y, Liu XJ, Ohnuma I, Kainuma R, Ishida K, Mater. Trans. 45 (2004) 646.

    Article  CAS  Google Scholar 

  27. He M, Chen Z, Qi GJ, Wong CC, Mhaisalkar SG, Thin Solid Films 462 (2004) 363.

    Article  ADS  Google Scholar 

  28. Ochoa F, Deng X, Chawla N, J. Electronic Materials 33 (2004) 1596.

    Article  ADS  CAS  Google Scholar 

  29. Lau KJ, Tang CY, Tse PC, Chow CL, Ng SP, Tsui CP, Rao B, International J. Fracture 130 (2004) 617.

    Article  CAS  Google Scholar 

  30. Choi S, Lee JG, Subramanian KN, Lucas JP, Bieler TR. J. Electron. Mater. 2002, 31(4), 292.

    Article  ADS  CAS  Google Scholar 

  31. F. Guo, J.P. Lucas, and K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 12, 27 (2001).

    Google Scholar 

  32. Lee JG, Subramanian KN. Microstructural features contributing to enhanced behavior of Sn-Ag based solder joints, Soldering & Surface Mount Technology 2005, 17, 33–39

    Article  CAS  Google Scholar 

  33. Lee JG, Telang AU, Bieler TR, Subramanian KN. J. Electron. Mater 31, (2002) 11

    Article  Google Scholar 

  34. A.U. Telang and T.R. Bieler, Scripta Mater. 52, 1027 (2005).

    Google Scholar 

  35. Rhee H, Lucas JP, Subramanian KN (2002) J. Mater. Sci.: Mater. Electron. 13:477

    Article  CAS  Google Scholar 

  36. Yang F, Li JCM. J Mater Sci, Mater Electron (2007) 18, 191–210

    Article  CAS  Google Scholar 

  37. Ubachs RLJM, Schreurs PJG., Geers MGD. J. Mech. Phys. Solids 2004, 52, 1763–1792.

    Article  MATH  ADS  CAS  Google Scholar 

  38. Ubachs RLJM, Schreurs PJG, Geers MGD (2007) Mechanics of Materials 39(7): 685–701.

    Article  Google Scholar 

  39. Gong J, Liu C, Conway PP, Silberschmidt VV. Computational Materials Science 39 (2007) 187–197.

    Article  CAS  Google Scholar 

  40. Telang AU, Bieler TR. (2005) JOM 57(6):44–49

    Article  CAS  Google Scholar 

  41. A.U. Telang, T.R. Bieler, and M.A. Crimp, Mater. Sci. Eng. A 421, 22 (2006).

    Google Scholar 

  42. Telang AU, Bieler TR, Choi S., Subramanian KN (2002) Journal of Materials Research 17(9):2294–2306.

    Article  ADS  CAS  Google Scholar 

  43. Telang AU, Bieler TR, JOM, 57 (2005) 44.

    Article  CAS  Google Scholar 

  44. Park S, Dhakal R, Lehman L, Cotts EJ (2007) Acta Mater 55 3253–3260

    Article  CAS  Google Scholar 

  45. S. Park, R. Dhakal, L. Lehman, and E.J. Cotts, IEEE Trans. Compon. Pack. Technol. 30, 178 (2007).

    Google Scholar 

  46. Lehman LP, Athavale SN, Fullem TZ, Giamis AC, Kinyanjui RK, Lowenstein M, Mather K, Patel R, Rae D, Wang J, Xing Y, Zavalij L, Borgesen P, Cotts EJ. (2004) J Electronic 33(12):1429–1439.

    Article  ADS  CAS  Google Scholar 

  47. Telang AU, Bieler TR, Zamiri A, Pourboghrat F, Acta Materialia 55 (2007) 2265

    Article  CAS  Google Scholar 

  48. Borgesen P, Bieler T, Lehman LP, Cotts EJ. MRS Bulletin April 32 (2007) 360–65.

    Google Scholar 

  49. Bieler TR, Jiang H, Lehman LP, Kirkpatrick T, Cotts EJ, Nandagopal B. (2008) IEEE Transactions on Components and Packaging Technologies 31(2):370–381.

    Article  CAS  Google Scholar 

  50. Duzgun B, Ekinci AE, Karaman I, Ucar N, J. of Mech. Behavior of Materials, 10 (1999) 187

    CAS  Google Scholar 

  51. Fujiwara M,Hirokawa T, J. Japan Inst. Metals 51 (1987) 830

    CAS  Google Scholar 

  52. Dutta I, J. Electronic Materials, 32 (2003) 201

    Article  ADS  CAS  Google Scholar 

  53. P. Sharma and P. Dasgupta, J. Electron. Pack. (Trans. ASME) 124, 292 (2002)

    Google Scholar 

  54. Wei Y, Chow CL, Lau KJ, Vianco P, Fang HE, J. Electronic Packaging 126 (2004) 367

    Article  CAS  Google Scholar 

  55. T.R. Bieler and T.K. Lee, Unpublished research.

  56. Mayeur JR, McDowell DL (2007) International Journal Of Plasticity 23(9):457–1485.

    Article  Google Scholar 

  57. Venkatramani G, Ghosh S, Mills M (2007) Acta Materialia 55(11):3971–3986.

    Article  CAS  Google Scholar 

  58. Werwer M, Cornec A (2006) International Journal of Plasticity 22(9):1683–1698.

    Article  MATH  CAS  Google Scholar 

  59. Kumar D, Bieler TR, Eisenlohr P, Mason DE, Crimp MA, Roters F, Raabe D (2008) J. Engineering Materials Technology-Trans. ASME 130(2), 021012.

    Article  Google Scholar 

  60. D.G. House, and E.V. Vernon, Brit J Appl Phys, 11 (1960) 254–9.

    Article  ADS  CAS  Google Scholar 

  61. V. T. Desphande, D.B. Sirdeshmukh, Acta Cryst. 15 (1962) 294–295.

    Google Scholar 

  62. A. Zamiri (Ph.D. Thesis, Michigan State University, 2008).

  63. ABAQUS Manual, Version 6.3 (Providence, RI: Hibbit, Karlsson & Sorensen Inc., 2001).

  64. J.W. Hutchison, Proc. R. Soc. Lond. A 319, 247 (1976).

    Google Scholar 

  65. Chang, YW, Asaro, RJ, Acta Metallurgica 29 (1981) 241

    Article  CAS  Google Scholar 

  66. Peirce, D, Asaro, R, Needleman, A, Acta Metallurgica 30 (1982) 1087

    Article  CAS  Google Scholar 

  67. J.O. Suh, K.N. Tu, and N. Tamura, J. Appl. Phys. 102, 063511 (2007).

    Google Scholar 

  68. Sundelin JJ, Nurmi ST, Lepisto TK, Mater. Sci. Eng. A 474 (2008) 201–207.

    Article  Google Scholar 

  69. Sylvestre J, Blander A (2008) J Electronic Materials 37(10), 1618–1623.

    Article  ADS  CAS  Google Scholar 

  70. Laurila T, Mattila T, Vuorinen V, Karppinen J, Sippola M, Kivilahti JK (2007) Microelectronics Reliability 47(7), 1135–1144.

    Article  CAS  Google Scholar 

  71. Henderson DW, Woods JJ, Gosselin TA, Bartelo J, King DE, Korhonen TM, Korhonen MA, Lehman LP, Kang SK, Lauro P, Shih DY, Goldsmith C, Puttlitz KJ (2004) J Mater Res 19:1608–12.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.R. Bieler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamiri, A., Bieler, T. & Pourboghrat, F. Anisotropic Crystal Plasticity Finite Element Modeling of the Effect of Crystal Orientation and Solder Joint Geometry on Deformation after Temperature Change. J. Electron. Mater. 38, 231–240 (2009). https://doi.org/10.1007/s11664-008-0595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0595-0

Keywords

Navigation