Skip to main content
Log in

Effect of Slag Basicity on Dephosphorization at Lower Basicity and Lower Temperature Based on Industrial Experiments and Ion-Molecular Coexistence Theory

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present work, the effect of dephosphorization slag basicity on the dephosphorization of hot metal has been studied in the lower temperature range of 1370 °C to 1420 °C and the lower basicity of 1.26 to 2.20 with new double slag converter steelmaking process (NDSP). Based on the ion-molecule coexistence theory (IMCT), the thermodynamic model IMCT-Ni of dephosphorization slag is established. With increasing basicity from 1.26 to 2.20, the phosphorus distribution ratio LP between hot metal and slag increases. The dephosphorization ratio and the decarbonization ratio both increase, while the demanganization ratio decreases. The morphologies of P-rich phase change from long strip shape (B = 1.26-1.37) to dendritic shape (B = 1.50) and to massive shape (B = 1.71-2.20). The area of P-rich phase increases from about 4 μm2 to about 8000 μm2. The content of P2O5 in the P-rich phase increases and the value of the coefficient n in nC2S-C3P of the P-rich phase decreases from 6-20 to 1-2. The phosphorus-enrichment contribution ratio of calcium silicate is in the order of \(R_{{{\text{C2S}}}}\)>\(R_{{{\text{CS}}}}\)>\(R_{{{\text{C3S}}}}\)>\(R_{{{\text{C3S2}}}}\). The phosphorus-enrichment degree in dephosphorization slag is enhanced mainly by C2S-C3P. With increasing basicity, the calculated results of IMCT-(pct C2S-CjP) and \(R_{{{\text{C2S}}}}\) are well consistent with the measurement results of AP-rich phase and (pct P2O5)P-rich phase of industrial experiment, indicating that the IMCT calculated results can correctly express the phosphorus-enrichment degree of dephosphorization slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a i, b i :

Initial mole numbers of component i in 100 g dephosphorization slag, (mol)

n i :

Total equilibrium moles of all structural units in 100 g dephosphorization slag based on IMCT, (mol)

N i :

Mass action concentration of structural unit i or ion couple i in dephosphorization slag based on IMCT, (−)

\(\Delta _{{\text{r}}} G_{{{\text{m,}}ci}}^{\Theta }\) :

Change of standard molar Gibbs free energy of reaction for structural unit i or component i, (J/mol)

\(K_{{ci}}^{\Theta }\) :

Standard equilibrium constants of chemical reactions for forming component i or structural unit i, (−)

M i :

Relative atomic mass of element i or the relative molecular mass of component i, (−)

\(N_{{Ci-Pj}}\) :

Defined-enrichment possibility of containing P2O5 solid solution based on the calculated mass action concentration Ni of complex molecule Ci and Pj, (−)

\(R_{{Ci - Pj}}\) :

Enrichment degree of solid solution containing P2O5 based on IMCT, (−)

\(R_{{Ci}}\) :

Phosphorus-enrichment contribution ratio of calcium silicate based on IMCT, (−)

\(\eta _{{\text{i}}}\) :

Removal ratio of elements in hot metal, (pct)

T :

Temperature, (°C)

B:

Binary basicity, (−)

r2 :

Fitting regression coefficient, (−)

\(n{\text{(}}i{\text{)}}^{{{\text{ P - rich phase}}}}\) :

Mole number of i in P-rich phase, (mol)

\( \Delta {\text{G}}_{{{\text{A{-}B}}}} \) :

Actual Gibbs free energy of A to B reaction, (J)

IMCT-(pct C2S-CjP):

Mass fraction of C2S-CiP solid solution in P-rich phase by IMCT, (pct)

AP-rich phase :

Average area fraction of P-rich phase at 1500 times under 3 fields of view, (pct)

References

  1. Y. Ogawa, M. Yano, S. Y. Kitamura and H. Hirata: Tetsu-to-Hagané., 2001, vol. 87 (1), pp. 21-28.

    Article  CAS  Google Scholar 

  2. Y. Ogawa, M. Yano, S. Y. Kitamura and H. Hirata: Steel Res. Int., 2003, vol. 74 (2), pp. 70-76.

    Article  CAS  Google Scholar 

  3. N. Sasaki, Y. Ogawa, S. Mukawa and K. I. Miyamoto: Nippon Steel Tech. Rep., 2012, vol. 394, pp. 26-32.

    Google Scholar 

  4. Y. Wang, S. F. Yang, J. S. Li, J. Feng and F. Wang: High Temp. Mater. Proc., 2018, vol. 37(7), pp. 625-33.

    Article  CAS  Google Scholar 

  5. W. K. Yang, J. Yang, Y. Q. Shi, Z. J. Yang, F. B. Gao, R. H. Zhang and G. F. Ye: Ironmaking Steelmaking., 2020. https://doi.org/10.1080/03019233.2020.1731256.

    Article  Google Scholar 

  6. Y. R. Fang, B. C. Huang, Z. Y. Lai, B. Y. Chen and X. F. Zeng: Steelmaking., 2014, vol. 30(3), pp. 1-4.

    CAS  Google Scholar 

  7. F. Y. Liu, G. C. Wang, Y. Zhao, J. W. Tan, C. M. Zhao and Q. Wang: Ironmak. Steelmak.., 2019, vol. 46(4), pp. 392-403.

    Article  CAS  Google Scholar 

  8. M. L. Wang and W. Y. Yang: Ironmak. Steelmak., 2019. https://doi.org/10.1080/03019233.2019.1673546.

    Article  Google Scholar 

  9. G. F. Ye, J. Yang, R, H, Zhang, W. K. Yang and H. Sun: Int. J. Miner. Metall. Mater., 2021, vol. 28(1), pp. 66-75.

  10. S. L. Xie and W. L. Wang: Steel Res. Int., 2016, vol. 87(3), pp. 376-85.

    Article  CAS  Google Scholar 

  11. S. L. Xie, W. L. Wang, Z. C. Luo and D. Y. Huang: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1583-93.

    Article  Google Scholar 

  12. S. Kakimoto, A. Kiyose and R. Murao: ISIJ Int., 2017, vol. 57(10), pp. 1710-17.

    Article  CAS  Google Scholar 

  13. C. M. Du, N. N. Lv, C. Su, W. M. Liu, J. X. Yang and H. C. Wang: J. Iron Steel Res. Int., 2019, vol. 26, pp. 1162-70.

    Article  CAS  Google Scholar 

  14. P. K. Son and Y. Kashiwaya: ISIJ Int., 2008, vol. 48(9), pp. 1165-74.

    Article  CAS  Google Scholar 

  15. S. Fukagai, T. Hamano and F. Tsukihashi: ISIJ Int., 2010, vol. 47(1), pp. 187-89.

    Article  Google Scholar 

  16. R. Inoue and H. Suito: ISIJ Int., 2006, vol. 46(2), pp. 174-79.

    Article  CAS  Google Scholar 

  17. R. Inoue and H. Suito: ISIJ Int., 2006, vol. 46(2), pp. 180-87.

    Article  Google Scholar 

  18. X. C. Ma, G. G. Cheng and J. Zhang: J. Univ. Sci. Technol. Beijing., 2011, vol. 33(11), pp. 1337-40.

    CAS  Google Scholar 

  19. G. G. Cheng and J. Zhang: Iron Steel Vanadium Titanium, 1994, vol. 15(3), pp. 1-2.

    Google Scholar 

  20. G. G. Cheng and J. Zhang: Iron Steel Vanadium Titanium, 1994, vol. 15(2), pp. 1-4.

    Google Scholar 

  21. G. G. Cheng and P. Zhao: J. Univ. Sci. Technol. Beijing., 1995, vol. 17, pp. 52-56.

    Google Scholar 

  22. X. M. Yang, J. P. Duan, C. B. Shi, M. Zhang, Y. L. Zhang and J. C. Wang: Metall. Mater. Trans. B., 2011, vol. 42B, pp. 738-70.

    Article  Google Scholar 

  23. X. M. Yang, C. B. Shi, M. Zhang, J. P. Duan and J. Zhang: Metall. Mater. Trans. B., 2011, vol. 42B, pp. 951-76.

    Article  Google Scholar 

  24. N. M. Chuiko: Ferrous Met., 1959, vol. 5, pp. 3-10.

    Google Scholar 

  25. J. Zhang: Computational Thermodynamics of Metallurgical Melt and Solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  26. P. C. Li,X. M. Yang and J. Zhang: J. Univ. Sci. Technol. Beijing., 2014, vol. 36(12), pp. 1608-14.

    CAS  Google Scholar 

  27. S. L. Xie, W. L. Wang, D. Y. Huang, H. C. Li and Y. Du: Steel Res. Int., 2018, vol. 89, pp. 1700317.

    Article  Google Scholar 

  28. J. Y. Li, M. Zhang, M. Guo and X. M. Yang: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1666-82.

    Article  Google Scholar 

  29. J. Y. Li, M. Zhang, M. Guo and X. M. Yang: Int. J. Miner. Metall. Mater., 2016, vol. 23(5), pp. 520-33.

    Article  CAS  Google Scholar 

  30. W. K. Yang, J. Yang, Y. Q. Shi, Z. J. Yang, F. B. Gao, R. H. Zhang and G. F. Ye: Steel Res. Int., 2021, vol. 92. https://doi.org/10.1002/srin.202000438.

  31. W.K. Yang, J. Yang, Y.Q. Shi, Z.J. Yang, F.B. Gao, R.H. Zhang and H. Sun: Metals, 2021, vol. 11. https://doi.org/10.3390/met11030417.

  32. X. Han, C.G. Zhou, J. Li, C.B. Shi, J.P. Ge and K.S. Cai: J. Iron Steel Res., 2016, vol. 28(9), pp. 40-49.

  33. W.L. Dong, H.W. Pan, L. Luo, C.X. Ji, H.B. Li and Z.H. Tian: Iron and Steel, 2020, vol. 55(2), pp. 75-81, 94.

  34. X. H. Huang: Principles of Iron and Steel Metallurgy, Metallurgical Industry Press, Beijing, China, 2002.

    Google Scholar 

  35. W. Xiong, J.Wang and F. Yang: Mining Metallurgy, 2013, vol. 22(4), pp. 47-50.

    CAS  Google Scholar 

  36. C. Li, H. J. Guo and G. G. Cheng: Special Steel, 2009, vol. 30(5), pp. 4-6.

    CAS  Google Scholar 

  37. Y. Liu, S. H. Peng, Y. J. Xia and X. B. Zhou: J. Univ. Sci. Technol. Anhui., 2019, vol. 36(1), pp. 7-12.

    Google Scholar 

  38. D. Z. Wang, Y. P. Bao and M. Wang: Chinese Journal of Engineering, 2018, vol. 40(1), pp. 65-72.

    Google Scholar 

  39. M. Timucin and A. Muan. J. Am. Cream. Soc., 1922, vol. 75, pp. 1399-1406.

    Article  Google Scholar 

  40. I. Barin, O. Knacke and O. Kubaschewski. Thermochemical Properties of Inorganic Substances. Springer, Berlin. 1977.

    Book  Google Scholar 

  41. S. Y. Kitamura, S. Saito, K. Utagawa, H. Shibata and D. G. C. Robertson: ISIJ Int., 2009, vol. 49(12), pp. 1838-44.

    Article  CAS  Google Scholar 

  42. W. S. Zhang, J. T. Zhang, J. Y. Ye, J. S. Qian, W. G. Shen and Z. Y. Wang: J. Chin. Ceram. Soc. 2019, vol. 47(11), pp. 1664-69.

    CAS  Google Scholar 

  43. B. Dikens and W. E. Brown: Tsehermaks Min. Petr. Mitt., 1971, vol. 16, pp. 1-27.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (U1960202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 9 April 2021; accepted 23 June 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yang, J., Zhang, RH. et al. Effect of Slag Basicity on Dephosphorization at Lower Basicity and Lower Temperature Based on Industrial Experiments and Ion-Molecular Coexistence Theory. Metall Mater Trans B 52, 3403–3422 (2021). https://doi.org/10.1007/s11663-021-02270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02270-y

Navigation