Skip to main content
Log in

Enrichment Mechanism of Phosphate in CaO-SiO2-FeO-Fe2O3-P2OSteelmaking Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The phosphate-enrichment behavior has experimentally been investigated in CaO-SiO2-FeO-Fe2O3-P2Osteelmaking slags. The reaction ability of structural units in the slags has been represented the mass action concentration \( N_{i} \) from the developed ion and molecule coexistence theory (IMCT)-\( N_{i} \) model based on the IMCT. The defined enrichment possibility \( N_{{{\text{c}}i{\text{ {-}c}}j}} \) and enrichment degree \( R_{{{\text{c}}i{\text{{-}c}}j}} \) of solid solutions containing P2Ofrom the developed IMCT-\( N_{i} \) model have been verified from the experimental results. The effects of binary basicity, the mass percentage ratio \( {{ ( {\text{pct Fe}}_{t} {\text{O)}}} \mathord{\left/ {\vphantom {{ ( {\text{pct Fe}}_{t} {\text{O)}}} { ( {\text{pct CaO)}}}}} \right. \kern-0pt} { ( {\text{pct CaO)}}}} \), and mass percentage of P2Oin the initial slags on phosphate-enrichment behavior in the slags has also been discussed. The results show that the P2Ocomponent can easily be bonded by CaO to form tricalcium phosphate 3 CaO·P2O5, and the formed 3CaO·P2Ocan react with the produced dicalcium silicate 2CaO·SiOto generate solid-solution 2CaO·SiO2-3CaO·P2Ounder fixed cooling conditions. The maximum value of the defined enrichment degree \( R_{{{\text{C}}_{ 2} {\text{S{-}}} {\text{C}}_{ 3} {\text{P}}}} \) of solid-solution 2CaO·SiO2-3CaO·P2Ois obtained as 0.844 under conditions of binary basicity as 2.5 and the mass percentage ratio \( {{ ( {\text{pct Fe}}_{t} {\text{O)}}} \mathord{\left/ {\vphantom {{ ( {\text{pct Fe}}_{t} {\text{O)}}} { ( {\text{pct CaO)}}}}} \right. \kern-0pt} { ( {\text{pct CaO)}}}} \) as 0.955 at fixed cooling conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\( a_{{{\text{R,}}i}} \) :

Activity of components i in slags relative to pure solid or liquid component i as standard state with mole fraction \( x_{i} \) as concentration unit and following the Raoult’s law, i.e., \( a_{{{\text{R,}}i}} = x_{i} \gamma_{i} \), (−)

\( b_{i} \) :

Mole number of component i in 100-g slags before reaction equilibrium, having the same meaning with \( n_{i}^{0} \), (mol)

\( \Delta_{\text{r}} G_{{{\text{m, }}i}}^{\Theta } \) :

Standard molar Gibbs free energy change of reaction for forming component i or structural unit i, (J/mol)

\( K_{i}^{\Theta } \) :

Standard equilibrium constant of chemical reaction for forming component i or structural unit i, (−)

M i :

Relative atomic mass of element i or relative molecular mass of component i, (−)

\( n_{i} \) :

Equilibrium mole number of structural unit i or ion couple i in 100-g slags based on the IMCT, (mol)

\( \Sigma n_{i} \) :

Total equilibrium mole number of all structural units in 100-g slags based on the IMCT, (mol)

\( N_{i} \) :

Mass action concentration of structural unit i or ion couple i in slags based on the IMCT, (−)

\( N_{{{\text{c}}i {\text{{-}c}}j}} \) :

Defined enrichment possibility of solid solution containing P2O5 based on the calculated mass action concentration \( N_{i} \) of complex molecule ci and cj, (−)

R :

Gas constant, (8.314 J/(mol·K))

\( R_{{{\text{c}}i {\text{{-}c}}j}} \) :

Defined enrichment degree of solid solution containing P2O5, (−)

\( R_{\text{P}} \) :

Determined enrichment ratio \( R_{\text{P}} \) of phosphorus, (−)

T :

Absolute temperature, (K)

(pct i):

Mass percentage of component i in slags, (−)

(i):

Species i in slag phase, (−)

\( \gamma_{i} \) :

Activity coefficient of component i in slags related with activity \( a_{{{\text{R,}}i}} \), (−)

ci :

Molecule ci or compound ci or compound i of calcium silicates, (−)

cj :

Molecule cj or compound cj or compound j containing P2O5, (−)

References

  1. H. Ono, A. Inagaki, T. Masui, H. Narita, T. Mitsuo, S. Nosaka, and S. Gohda: Tetsu-to-Hagané, 1980, vol. 66, no. 9, pp. 1317-23.

    Google Scholar 

  2. K. Morita, M.X. Guo, N. Oka, and N. Sano: J. Mater. Cycles Waste Manag., 2002, vol. 4, no. 2, pp. 93-101.

    Google Scholar 

  3. S. Takeuchi, N. Sano, and Y. Matsushita: Tetsu-to-Hagané, 1980, vol. 66, no. 14, pp. 2050-7.

    Google Scholar 

  4. Z.T. Sui and P.X. Zhang: ACTA Metall. Sin, 1997, vol. 33, no. 9, pp. 943-51.

    Google Scholar 

  5. X.R. Wu, L.S. Li, and Y.C. Dong: ISIJ Int., 2007, vol. 47, no. 3, pp. 402-7.

    Article  Google Scholar 

  6. L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui: ISIJ Int., 2006, vol. 46, no. 3, pp. 458-65.

    Article  Google Scholar 

  7. W. Fix, H. Heyman, and R. Heinke: J. Am. Ceram. Soc., 1969, vol. 52, no. 6, pp. 346-47.

    Article  Google Scholar 

  8. K. Ito, M. Yanagisawa, and N. Sano: Tetsu-to-Hagané, 1982, vol. 68, no. 2, pp. 342-4.

    Google Scholar 

  9. R. Inoue and H Suito: ISIJ Int., 2006, vol. 46, no. 2, pp. 174-9.

    Article  Google Scholar 

  10. H Suito and R. Inoue: ISIJ Int., 2006, vol. 46, no. 2, pp. 180-7.

    Article  Google Scholar 

  11. R. Inoue and H Suito: ISIJ Int., 2006, vol. 46, no. 2, pp. 188-94.

    Article  Google Scholar 

  12. T. Hamano, S. Fukagai, and F. Tsukihashi: ISIJ Int., 2006, vol. 46, no. 4, pp. 490-5.

    Article  Google Scholar 

  13. S. Fukagai, T. Hamano, and F. Tsukihashi: ISIJ Int., 2007, vol. 47, no. 1, pp. 187-9.

    Article  Google Scholar 

  14. X. Yang, H. Matsuura, and F Tsukihashi: ISIJ Int., 2009, vol. 49, no. 4, pp. 1298-307.

    Article  Google Scholar 

  15. X. Yang, H. Matsuura, and F. Tsukihashi: Tetsu-to-Hagané, 2009, vol. 95, no. 3, pp. 268-74.

    Article  Google Scholar 

  16. X. Yang, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2010, vol. 50, no. 5, pp. 702-11.

    Article  Google Scholar 

  17. F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka: ISIJ Int., 2010, vol. 50, no. 6, pp. 822-9.

    Article  Google Scholar 

  18. H. Kubo, K. Matsubae-yokoyama, and T. Nagasaka: ISIJ Int., 2010, vol. 50, no. 1, pp. 59-64.

    Article  Google Scholar 

  19. K. Matsubae-Yokoyama, H. Kubo, and T. Nagasaka: ISIJ Int., 2010, vol. 50, no. 1, pp. 65-70.

    Article  Google Scholar 

  20. X.M. Yang, M. Zhang, J.L. Zhang, P.C. Li, J.Y. Li, and J. Zhang: Steel Res. Int., 2014, vol. 85, no. 3, pp. 347-75.

    Article  Google Scholar 

  21. J. Björkvall, D. Sichen, and S. Seetharaman: High Temp. Mater. Processes, 1999, vol. 18, no. 4, pp. 253-68.

    Article  Google Scholar 

  22. S. Basu, A. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2008, vol. 39B, no. 3, pp. 447-56.

    Article  Google Scholar 

  23. J. Bygdén, D. Sichen, and S. Seetharaman: Steel Res., 1994, vol. 65, no. 10, pp. 421-8.

    Google Scholar 

  24. P. Fredriksson and S. Seetharaman: Steel Res. Int., 2004, vol. 75, no. 4, pp. 240-6.

    Google Scholar 

  25. P. Fredriksson and S. Seetharaman: Steel Res. Int., 2004, vol. 75, no. 6, pp. 357-65.

    Google Scholar 

  26. J. Björkvall, D. Sichen, V. Stolyarova, and S. Seetharaman: Glass Phys. Chem., 2001, vol. 27, no. 2, pp. 132-47.

    Article  Google Scholar 

  27. C. Borgianni and P. Granati: Metall. Trans. B, 1977, vol. 8, no. 1, pp. 147-51.

    Article  Google Scholar 

  28. J.D. Sommerville, I. Ivanchev, and H.B. Bell: Proc. Int. Symp. on Metallurgical Chemistry—Applications in Ferrous Metallurgy, The Iron and Steel Institute, London, U.K., 1973, pp. 23–25.

  29. G. Ottonello: J. Non-Cryst. Solids, 2001, vol. 282, no. 1, pp. 72-85.

    Article  Google Scholar 

  30. D.P. Tao: Metall. Mater. Trans. B, 2006, vol. 37B, no. 6, pp. 1091-7.

    Google Scholar 

  31. L. Zhang, S. Sun, and S. Jahanshahi: J. Phase Equilib. Diff., 2007, vol. 28, no. 1, pp. 121-9.

    Article  Google Scholar 

  32. M. Modigell, A. Traebert, P. Monheim, S. Petersen, and U. Pickartz: Comput. Chem. Eng., 2001, vol. 25, nos. 4-6, pp. 723-7.

    Google Scholar 

  33. M.L. Kapoor and M.G. Frohberg: Theoretical Treatment of Activities in Silicate Melts, Chemical Metallurgy of Iron and Steel, The Iron and Steel Institute, London, U.K., 1971, pp. 17-22.

    Google Scholar 

  34. A.T. Dinsdale, J.A. Gisby, T.I. Barry, A. Gibbon, and A.L. Davies: Proceedings of ‘Pyrometallurgy ‘95’, The Institute of Mining and Metallurgy, Cambridge, U.K., 1995.

  35. C. Chen and S. Jahanshah: Metall. Mater. Trans. B, 2010, vol. 41B, no. 6, pp. 1166-74.

    Article  Google Scholar 

  36. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, no. 4, pp. 651-9.

    Article  Google Scholar 

  37. A.D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, no. 6, pp. 1355-60.

    Article  Google Scholar 

  38. P. Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, no. 6, pp. 1397-407.

    Article  Google Scholar 

  39. A. Pelton, P. Chartrand, and G. Eriksson: Metall. Mater. Trans. A, 2001, vol. 32A, no. 6, pp. 1409-16

    Article  Google Scholar 

  40. Y.B. Kang and A.D. Pelton: Metall. Mater. Trans. B, 2009, vol. 40B, no. 6, pp. 979-94

    Article  Google Scholar 

  41. I.H. Jung, Y.B. Kang, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, no. 2, pp. 259-68.

    Article  Google Scholar 

  42. G Eriksson and A.D. Pelton: Metall. Trans. B, 1993, vol. 24, no. 5, pp. 795-805.

    Article  Google Scholar 

  43. A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2005, vol. 36B, no. 5, pp. 623-38.

    Article  Google Scholar 

  44. A.D. Pelton and M. Blander: in Second International Symposium on Metallurgical Slags and Fluxes, TMS-AIME, Lake Tahoe, NV, 1984.

  45. S. Ban-ya: ISIJ Int., 1993, vol. 33, no. 2, pp. 2-11.

    Article  Google Scholar 

  46. B. Hallstedt, M. Hillert, M. Selleby, and B. Sundman: CALPHAD, 1994, vol. 18, no. 1, pp. 31-7.

    Article  Google Scholar 

  47. E. Tijskens, W.A. Viaene, and P. Geerlings: Phys. Chem. Miner., 1995, vol. 22, no. 3, pp. 186-99.

    Article  Google Scholar 

  48. L.C. Oertel and A. Costa e Silva:CALPHAD, 1999, vol. 23(3–4), pp. 379–91.

  49. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L Zhang, and J.C. Wang: A Metall. Mater. Trans. B, 2011, vol. 42B, no. 4, pp. 738-70.

    Article  Google Scholar 

  50. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, no. 5, pp. 951-76.

    Article  Google Scholar 

  51. X.M. Yang, C.B. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, vol. 83, no. 3, pp. 244-58.

    Article  Google Scholar 

  52. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  53. Verein Deutscher Eisenhüttenleute: Slag Atlas, 2nd ed., Woodhead Publishing Limited, Cambridge, U.K., 1995.

  54. J.X. Chen: Handbook of Common Figures, Tables and Data for Steelmaking, Metallurgical Industry Press, Beijing, China, 1984.

    Google Scholar 

  55. C. Nassaralla and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23B, no. 2, pp. 117-23.

    Article  Google Scholar 

  56. M. Timucin and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, no. 6, pp. 1399-406.

    Article  Google Scholar 

  57. I. Barin, O. Knacke, and O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Supplement. Springer, New York, NY, 1977, p. 392.

    Book  Google Scholar 

  58. E.T. Turkdogan. Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 8-12.

    Google Scholar 

  59. K. Narita and K. Shinji: Kobe Steel Eng. Reports, 1969, vol. 19, pp. 25-42.

    Google Scholar 

  60. The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking. Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.

    Google Scholar 

  61. H. Suito, A. Ishizaka, R. Inoue, and Y. Takahashi: Tetsu-to-Hagané, 1979, vol. 65, no. 13, pp. 1848-57.

    Google Scholar 

  62. E.T. Turkdogan: ISIJ Int., 2000, vol. 40, no. 10, pp. 964-70.

    Article  Google Scholar 

  63. R. Nagabayashi, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1988, vol. 74, no. 9, pp. 1770-7.

    Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Nos. 51372019, 51174186, 51072022, and 50874013) and the National Basic Research Program of China (No. 2014CB643401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Guo.

Additional information

Manuscript submitted December 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jy., Zhang, M., Guo, M. et al. Enrichment Mechanism of Phosphate in CaO-SiO2-FeO-Fe2O3-P2OSteelmaking Slags. Metall Mater Trans B 45, 1666–1682 (2014). https://doi.org/10.1007/s11663-014-0085-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0085-0

Keywords

Navigation