Skip to main content
Log in

Modification of Phosphorous Enrichment Behaviours in Steelmaking Slags Based on Phase Transformations

  • Pyrometallurgical Processing of Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the phase transformations of steelmaking slags were identified for the purpose of phosphorus separation and material recycling, where the samples after high-temperature experiments and quenching were characterized using electron probe x-ray microanalysis and x-ray diffraction. For hot slags held under argon atmosphere, the main phases changed from (Fe,Mg)O, (Fe,Ca)O and C2S-C3P (Ca2SiO4-Ca3P2O8) at 1450–1400°C to (Fe,Mg,Ca)O, C2S-C3P and CaO-TiO2-FeO-Al2O3 liquid at 1200–600°C. From the respect of phosphorus concentration in C2S-C3P, 1400°C was an optimum temperature, which also accounted for a suitable treatment temperature for cooled slags. Moreover, air atmosphere resulted in more liquid phase, CaO-MgO-Fe2O3-SiO2, due to the oxidation of Fe2+ to Fe3+. In addition to C2S-C3P, P2O5 was also present in this liquid phase, a drawback for further phosphorus recovery. The P2O5 concentration in the liquid phase decreased with decreasing temperature, and thus, a relatively lower temperature was preferred in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. US Energy Information Administration. International Energy Outlook 2019. https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf.

  2. J.P. Birat. Global Technology Roadmap for CCS in Industry, Steel Sectoral Report, Contribution to the UNIDO roadmap on CCS - fifth draft, 1–66 (2010).

  3. US Geological Survey, 2016 Minerals Yearbook, SLAG—IRON AND STEEL, By Hendrik G. van Oss, 1–9 (2016). https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/myb1-2016-feste.pdf.

  4. Y. Jiang, T.C. Ling, C. Shi, and S.Y. Pan, Resour. Conserv. Recycl. 136, 187. (2018).

    Article  Google Scholar 

  5. Z. Wang, and I. Sohn, J. Sustainable Metal. 5, 127. (2019).

    Article  Google Scholar 

  6. D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, T.O. Shepker, and M.A. Zak, Environ. Sci. Technol. 34, 1576. (2000).

    Article  Google Scholar 

  7. C. Li, J. Gao, and Z. Guo, Metall. Mater. Trans. B 47, 1516. (2016).

    Article  Google Scholar 

  8. C. Li, J. Gao, Z. Wang, H. Ren, and Z. Guo, ISIJ Int. 57, 767. (2017).

    Article  Google Scholar 

  9. K. Yokoyama, H. Kubo, K. Mori, H. Okada, S. Takeuchi, and T. Nagasaka, ISIJ Int. 47, 1541. (2007).

    Article  Google Scholar 

  10. K. Matsubae-Yokoyama, H. Kubo, and T. Nagasaka, ISIJ Int. 50, 65. (2010).

    Article  Google Scholar 

  11. H. Kubo, K. Matsubae-Yokoyama, and T. Nagasaka, ISIJ Int. 50, 59. (2010).

    Article  Google Scholar 

  12. M. Numata, N. Maruoka, S.J. Kim, and S.Y. Kitamura, ISIJ Int. 54, 1983. (2014).

    Article  Google Scholar 

  13. C.M. Du, X. Gao, S.J. Kim, S. Ueda, and S.Y. Kitamura, ISIJ Int. 56, 1436. (2016).

    Article  Google Scholar 

  14. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, ISIJ Int. 57, 487. (2017).

    Article  Google Scholar 

  15. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, ISIJ Int. 58, 833. (2018).

    Article  Google Scholar 

  16. T. Iwama, C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, ISIJ Int. 58, 1351. (2018).

    Article  Google Scholar 

  17. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, ISIJ Int. 58, 860. (2018).

    Article  Google Scholar 

  18. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, ISIJ Int. 58, 1659. (2018).

    Article  Google Scholar 

  19. T. Iwama, C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, ISIJ Int. 60, 400. (2019).

    Article  Google Scholar 

  20. C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, Hydrometallurgy 189, 105109. (2019).

    Article  Google Scholar 

  21. T. Miki, and S. Kaneko, ISIJ Int. 55, 142. (2015).

    Article  Google Scholar 

  22. K. Nakase, A. Matsui, N. Kikuchi, and Y. Miki, ISIJ Int. 57, 1197. (2017).

    Article  Google Scholar 

  23. S.S. Jung, and I. Sohn, Environ. Sci. Technol. 48, 1886. (2014).

    Article  Google Scholar 

  24. Y. Sun, M. Chen, Z. Cui, L. Contreras, and B. Zhao, Metall. Mater. Trans. B 51, 1. (2020).

    Article  Google Scholar 

  25. Y. Sun, M. Chen, Z. Cui, L. Contreras, and B. Zhao, Metall. Mater. Trans. B 51, 426. (2020).

    Article  Google Scholar 

  26. M. Chen, Y. Sun, E. Balladares, C. Pizarro, and B. Zhao, Calphad 66, 101642. (2019).

    Article  Google Scholar 

  27. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, J.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, and C. Robelin, Calphad 33, 295. (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ms Jie Yu for the laboratory assistance in the high-temperature experiments and financial support from Shougang and Rio Tinto. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis (CMM), The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1211 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, M., Ma, X. et al. Modification of Phosphorous Enrichment Behaviours in Steelmaking Slags Based on Phase Transformations. JOM 73, 1845–1852 (2021). https://doi.org/10.1007/s11837-021-04644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04644-8

Navigation