Skip to main content
Log in

Comprehensive Evaluation of Phosphorus Enrichment Capacity for Decarburization Slag at Different Temperatures Based on Industrial Experiments, Mineral Phase Analysis and Ion–Molecule Coexistence Theory

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present work, the effects of decarburization endpoint temperature on the molten steel dephosphorization and phosphorus enrichment behavior of decarburization slag are studied with New Double slag converter Steelmaking Process (NDSP) industrial experiments under the temperature range of 1602 °C–1701 °C and the slag basicity of about 3.4. The phosphorus enrichment capacity of decarburization slag has been comprehensively evaluated at different temperatures based on the industrial experiment results, ion–molecule coexistence theory (IMCT) and mineral phase analysis of slag. With increasing the temperature from 1602 °C to 1701 °C, the dephosphorization ratio in decarburization stage decreases from 90.0 to 75.8 pct, and the phosphorus content in molten steel increases from 0.007 to 0.022 pct. The oxidation capacity of different reaction interfaces is large in the sequence of: slag layer > slag-steel interface > molten steel layer, in which temperature has the greatest influence on the oxidation of decarburization slag. The area fraction in SEM images of (Mg + Fe)O phase that cannot dephosphorize in decarburization slag increases with increasing temperature, which significantly decreases the area fraction in SEM images of P-rich phase and weakens the phosphorus enrichment capacity of decarburization slag. The value of phosphorus enrichment contribution ratio of C2S is about 0.82~0.84. The calcium phosphate in decarburization slag has the greatest contribution to phosphorus distribution ratio and phosphate capacity, which can reach 99.99 pct, in which the contribution ratio of 3CaO·P2O5 is about 95.81 pct. The prediction model of phosphorus distribution ratio and phosphate capacity based on IMCT and slag oxidizability can accurately predict the phosphorus distribution ratio and phosphate capacity at the endpoint of decarburization stage in NDSP within the average relative error of 2.5 pct. The phosphorus enrichment capacity of decarburization slag in NDSP characterized by industrial experiment results, mineral phase results and IMCT model shows a consistent downward trend with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

B :

Binary basicity of slag (−)

T :

Temperature, (°C)

a i, b i :

Initial mole numbers of component i in 100 g decarburization slag, (mol)

n i :

Total equilibrium moles of all structural units in 100 g decarburization slag based on IMCT, (mol)

N i :

Mass action concentration of structural unit i or ion couple i in decarburization slag based on IMCT, (−)

\(\Delta_{{\text{r}}} G_{{\text{m,ci}}}^{\Theta }\) :

Change of standard molar Gibbs free energy of reaction for structural unit i or component i, (J/mol)

\(K_{{{\text{ci}}}}^{\Theta }\) :

Standard equilibrium constants of chemical reactions for forming component i or structural unit i, (−)

M i :

Relative atomic mass of element i or the relative molecular mass of component i, (−)

\(L_{{\text{P, Pj}}}^{{\text{IMCT}}}\) :

Phosphorus distribution ratio of nine structural units containing P2O5 in decarburization slag based on IMCT, (−)

\(L_{\text{P}}^{\text{IMCT}}\) :

Phosphorus distribution ratio of decarburization slag based on IMCT, (−)

\(C_{{{\text{PO}}_{{4}}^{{{3} - }} {\text{, index, Pj}}}}^{{{\text{IMCT}}}}\) :

Phosphate capacity index of nine structural units containing P2O5 in decarburization slag based on IMCT, (−)

\(C_{{{\text{PO}}_{{4}}^{{{3} - }} {\text{, index}}}}^{{{\text{IMCT}}}}\) :

Phosphate capacity index of decarburization slag based on IMCT, (−)

\(C_{{{\text{PO}}_{{4}}^{{{3} - }} }}^{{{\text{IMCT}}}}\) :

Phosphate capacity of decarburization slag based on IMCT, (−)

\(N_{{{\text{Ci}} - {\text{Pj}}}}\) :

Defined enrichment possibility of containing P2O5 solid solution based on the calculated mass action concentration Ni of complex molecule Ci and Pj, (−)

\(R_{{{\text{Ci}}}}\) :

Phosphorus enrichment contribution ratio of calcium silicate based on IMCT, (−)

\(\eta_{{\text{i}}}\) :

Removal ratio of element i in molten steel, (Percent)

\(K_{{{\text{IMCT}}}}^{{\Theta }}\) :

Apparent equilibrium constant of reaction based on IMCT, (−)

\(a_{{\text{O}}}^{{}}\) :

Oxygen activity of molten steel, (−)

\(\delta_{{\text{Relative error}}}\) :

Average relative error, (Percent)

\(\Lambda\) :

Optical basicity of the slag, (−)

r 2 :

Fitting regression coefficient, (−)

AP rich phase :

Average area percentages of mineral phase in SEM images with five measurements, (Percent)

References

  1. H. Sun, J. Yang, X.W. Lu, W.S. Liu, G.F. Ye, R.H. Zhang, and W.K. Yang: Metals, 2021, vol. 11(7), pp. 1030–53.

    Article  CAS  Google Scholar 

  2. Y. Ogawa, M. Yano, S.Y. Kitamura, and H. Hirata: Steel Res Int., 2003, vol. 74(2), pp. 70–76.

    Article  CAS  Google Scholar 

  3. W.K. Yang, J. Yang, Y.Q. Shi, Z.J. Yang, F.B. Gao, R.H. Zhang, and G.F. Ye: Ironmak. Steelmak., 2020, vol. 48(1), pp. 69–77.

    Article  Google Scholar 

  4. G.F. Ye, J. Yang, R.H. Zhang, W.K. Yang, and H. Sun: Int. J. Miner. Metall. Mater., 2021, vol. 28(1), pp. 66–75.

    Article  CAS  Google Scholar 

  5. R.H. Zhang, J. Yang, W.K. Yang, and H. Sun: Ironmak. Steelmak., 2021, vol. 48(10), pp. 1277–90.

    Article  CAS  Google Scholar 

  6. R.H. Zhang, J. Yang, H. Sun, and W.K. Yang: Steel Res Int., 2021, vol. 92(11), pp. 70–76.

    Article  Google Scholar 

  7. H. Sun, J. Yang, R.H. Zhang, and W.K. Yang: Metall. Mater. Trans. B, 2021, vol. 52(5), pp. 3403–22.

    Article  CAS  Google Scholar 

  8. X.F. Wan, D. Cao, D.G. Li, X.W. Liao, L.J. Wang, and G.H. Chang: Iron Steel, 2012, vol. 47(6), pp. 32–36.

    CAS  Google Scholar 

  9. X. Yang, F.M. Sun, J.L. Yang, F. Liu, K.S. Cheng, and J.H. Wang: J. Iron Steel Res. Int., 2013, vol. 20(8), pp. 41–47.

    Article  Google Scholar 

  10. Z.H. Tian, B.H. Li, X.M. Zhang, and Z.H. Jiang: J. Iron Steel Res. Int., 2009, vol. 16(3), pp. 6–14.

    Article  CAS  Google Scholar 

  11. J.Y. Li, M. Zhang, M. Guo, and X.M. Yang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1666–82.

    Article  Google Scholar 

  12. J.Y. Li, M. Zhang, M. Guo, and X.M. Yang: Int. J. Miner. Metall. Mater., 2016, vol. 23(5), pp. 520–33.

    Article  CAS  Google Scholar 

  13. T. Hamano, S. Fukagai, and F. Tsukihashi: ISIJ Int., 2006, vol. 46(4), pp. 490–95.

    Article  CAS  Google Scholar 

  14. A.N. Assis, M.A. Tayeb, S. Sridhar, and R.J. Fruehan: Metall. Mater. Trans. B, 2015, vol. 46(5), pp. 2255–63.

    Article  CAS  Google Scholar 

  15. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol. 42(4), pp. 738–70.

    Article  Google Scholar 

  16. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42(5), pp. 951–77.

    Article  CAS  Google Scholar 

  17. X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2016, vol. 47(4), pp. 2302–29.

    Article  CAS  Google Scholar 

  18. X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Metall. Mater. Trans. B., 2016, vol. 47(4), pp. 2330–46.

    Article  CAS  Google Scholar 

  19. X. Han, J. Li, C.G. Zhou, C.B. Shi, D.L. Zheng, and Z.M. Zhang: Ironmak. Steelmak., 2017, vol. 44(4), pp. 262–68.

    Article  CAS  Google Scholar 

  20. R. Zhang, Y. Min, Y. Wang, and C.J. Liu: Iron Steel, 2019, vol. 54(7), pp. 30–34.

    CAS  Google Scholar 

  21. W.K. Yang, J. Yang, R.H. Zhang, and H. Sun: ISIJ Int., 2021, vol. 61(10), pp. 2490–2500.

    Article  CAS  Google Scholar 

  22. X.J. Xia, J. Li, D.D. Fan, and G.D. Hou: ISIJ Int., 2019, vol. 59(9), pp. 1519–26.

    Article  CAS  Google Scholar 

  23. S.Y. Kitamura, S. Saito, K. Utagawa, H. Shibata, and D.G.C. Robertson: ISIJ Int., 2009, vol. 49(12), pp. 1838–44.

    Article  CAS  Google Scholar 

  24. S.L. Xie, W.L. Wang, Z.C. Luo, and D.Y. Huang: Metall. Mater. Trans. B, 2016, vol. 47(3), pp. 1583–93.

    Article  CAS  Google Scholar 

  25. S.Y. Kitamura, H. Shibata, and N. Maruoka: Steel Res Int., 2008, vol. 79(8), pp. 586–90.

    Article  CAS  Google Scholar 

  26. S.Y. Kitamura: Steel Res Int., 2010, vol. 81(9), pp. 766–71.

    Article  CAS  Google Scholar 

  27. A. Matsui, S. Nabeshima, H. Matsuno, N. Kikuchi, and Y. Kishimoto: Tetsu-to-Hagané., 2009, vol. 95(3), pp. 207–16.

    Article  CAS  Google Scholar 

  28. S.L. Xie and W.L. Wang: Steel Res Int., 2016, vol. 87(3), pp. 376–85.

    Article  CAS  Google Scholar 

  29. J. Zhang: Computational Thermodynamics of Metallurgical Melt and Solutions, Metallurgical Industry Press, Beijing, 2007.

    Google Scholar 

  30. S.L. Xie, W.L. Wang, D.Y. Huang, H.C. Luo, and Y. Du: Steel Res. Int., 2018, vol. 89(2), p. 1700317.

    Article  Google Scholar 

  31. H. Sun, J. Yang, R.H. Zhang, and W.K. Yang: ISIJ Int., 2022, vol. 62(6), pp. 1078–90.

    Article  CAS  Google Scholar 

  32. F. Pahlevani, S.Y. Kitamura, H. Shibata, and N. Maruoka: ISIJ Int., 2010, vol. 50(6), pp. 822–29.

    Article  CAS  Google Scholar 

  33. P.B. Drain, B.J. Monaghan, G.Q. Zhang, R.J. Longbottom, M.W. Chapman, and S.J. Chew: Ironmak. Steelmak., 2017, vol. 44(10), pp. 721–31.

    Article  CAS  Google Scholar 

  34. X.H. Huang: Principles of Iron and Steel Metallurgy, Metallurgical Industry Press, Beijing, 2002.

    Google Scholar 

  35. C. Wagner: Metall. Trans. B, 1975, vol. 6(3), pp. 405–09.

    Article  Google Scholar 

  36. T. Usui, K. Yamada, Y. Kawai, S. Inoue, H. Ishikawa, and Y. Nimura: Tetsu-to-Hagane., 1991, vol. 77(10), pp. 1641–48.

    Article  CAS  Google Scholar 

  37. G. Healy: J. Iron Steel Ins., 1970, vol. 208(6), pp. 664–68.

    CAS  Google Scholar 

  38. W. Urban, M. Weinberg, and J. Cappel: Iron Steel Technol, 2014, vol. 134(8), pp. 27–39.

    Google Scholar 

  39. T.A. Boom, D.R. Foshnacht, and D.M. Haezebrouck: Iron Steelmaker, 1990, vol. 17(10), pp. 59–62.

    Google Scholar 

  40. K. Chattopadhyay and S. Kumar: AIS Tech 2013 Iron and Steel Technology Conference, in Pittsburgh, 2013.

  41. C.M. Lee and R.J. Fruehan: Ironmak. Steelmak., 2005, vol. 32(6), pp. 503–08.

    Article  CAS  Google Scholar 

  42. I.D. Sommerville, X.F. Zhang, and J.M. Toguri: Trans Iron Steel Soc., 1985, vol. 6, pp. 29–35.

    Google Scholar 

  43. B. Li, L. Lin, H.J. Guo, J. Guo, S.C. Duan, and W.X. Sun: Ironmak. Steelmak., 2020, vol. 47(7), pp. 771–80.

    Article  CAS  Google Scholar 

  44. N. Maruoka, S. Ono, H. Shibata, and S.Y. Kitamura: ISIJ Int., 2013, vol. 53(10), pp. 1709–14.

    Article  CAS  Google Scholar 

  45. R. Selin, Y. Dong, and A.Q. Qi: Scand. J. Met., 1990, vol. 19, pp. 98–109.

    CAS  Google Scholar 

  46. A. Sobandi, H.G. Katayama, and T. Momono: ISIJ Int., 1998, vol. 38(8), pp. 781–88.

    Article  CAS  Google Scholar 

  47. T. Mori: Bull. Japn. Inst. Metals., 1984, vol. 25(11), pp. 354–61.

    Article  Google Scholar 

  48. H. Suito and R. Inoue: Trans. ISIJ., 1984, vol. 24(1), pp. 40–46.

    Article  CAS  Google Scholar 

  49. H. Suito, R. Inoue, and M.I. Takada: Trans. ISIJ., 1981, vol. 21(4), pp. 250–59.

    Article  CAS  Google Scholar 

  50. R.W. Young, J.A. Duffy, G.J. Hassall, and Z. Xu: Ironmak. Steelmak., 1992, vol. 19(3), pp. 201–19.

    CAS  Google Scholar 

  51. B. Birol, G. Polat, and M.N. Saridede: JOM., 2015, vol. 67(2), pp. 427–35.

    Article  CAS  Google Scholar 

  52. Y.W. Dong, Z.H. Jiang, Y.L. Cao, D. Hou, L.K. Liang, and J.C. Duan: ISIJ Int., 2015, vol. 55(4), pp. 904–06.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (U1960202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Yang or Wen-Kui Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yang, J., Yang, WK. et al. Comprehensive Evaluation of Phosphorus Enrichment Capacity for Decarburization Slag at Different Temperatures Based on Industrial Experiments, Mineral Phase Analysis and Ion–Molecule Coexistence Theory. Metall Mater Trans B 54, 115–145 (2023). https://doi.org/10.1007/s11663-022-02674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02674-4

Navigation