Skip to main content
Log in

Influence of Electro-Emulsification on Desulfurization of Rejected Electrolytic Manganese Metal in Electroslag Remelting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A transient three-dimensional comprehensive numerical model was developed to clarify the effect of electro-emulsification on sulfur mass transfer during the electroslag remelting process of rejected electrolytic manganese metal scrap. The magnetohydrodynamic thermal two-phase flow and solidification behavior were numerically clarified. The kinetics module was established to assess the sulfur mass transfer rate between molten manganese metal and molten slag. Furthermore, variations of the alternating current (AC) magnitude and direction were taken into account. A reasonable agreement between the experimental and simulated results was observed. The surface area of molten droplets was shown to enlarge and it regularly fluctuates under the Lorentz force action. At the constant frequency of 50 Hz, the desulfurization rate rises from 54.7 to 71.0 pct when the AC root mean square (RMS) value of the AC is increased from 3000 to 4000 A, while at the constant AC RMS value of 3500 A, it dropped from 63.4 to 58.5 pct with the frequency increases from 5 to 500 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\( A \) :

Area of the interface between the molten slag and the molten MM (m2)

\( A_{\text{mush}} \) :

Mushy zone resistance constant

\( a_{{\left[ {\text{Mn}} \right]}} \) :

Activity of manganese in molten MM

\( a_{{\left[ {\text{O}} \right]}} \) :

Activity of oxygen in molten MM

\( a_{{\left( {\text{MnO}} \right)}} \) :

Activity of manganese oxide in molten slag

\( C_{\text{S}} \) :

Sulfide capacity of molten slag

\( c \) :

Mass fraction of sulfur

\( \bar{c}_{\text{p}} \) :

Specific heat of mixture phase at constant pressure (J/(kg K))

\( \bar{D} \) :

Diffusion coefficient of sulfur in mixture phase (m2/s)

\( D_{\text{m}} \) :

Diffusion coefficient of sulfur in molten MM (m2/s)

\( D_{\text{s}} \) :

Diffusion coefficient of sulfur in molten slag (m2/s)

\( d_{\text{mold}} \) :

Diameter of mold (m)

\( \vec{E}_{0} \) :

Electric field intensity far from molten MM drop (V/m)

\( e_{i}^{j} \) :

Interaction coefficient of element j with respect to element i

\( \vec{F}_{\text{D}} \) :

Damping force (N/m3)

\( \vec{F}_{\text{L}} \) :

Lorentz force (N/m3)

\( \vec{F}_{\text{S}} \) :

Solute buoyancy force (N/m3)

\( \vec{F}_{\text{ST}} \) :

Interface tension (N/m3)

\( \vec{F}_{\text{T}} \) :

Thermal buoyancy force (N/m3)

\( f_{\ell } \) :

Liquid fraction

\( f \) :

Frequency of AC (Hz)

\( f_{\left[ i \right]} \) :

Activity coefficient of element i in molten MM

\( f_{{\left[ {\text{S}} \right]}} \) :

Activity coefficient of sulfur in molten MM

\( \bar{H} \) :

Enthalpy of mixture phase (J)

\( \vec{H} \) :

Magnetic field intensity (A/m)

\( \hat{H} \) :

Complex amplitude (A/m)

\( \bar{h} \) :

Sensible enthalpy of mixture phase (J)

\( \bar{h}_{\text{ref}} \) :

Reference sensible enthalpy of mixture phase (J)

\( I_{\text{rms}} \) :

RMS value of AC (A)

\( \vec{J} \) :

Current density (A/m2)

\( K \) :

Reaction equilibrium constant

\( k_{\text{s}} \) :

Mass transfer coefficient of sulfur inside the molten slag (m/s)

\( k_{\text{m}} \) :

Mass transfer coefficient of sulfur in the molten MM (m/s)

\( k_{\text{T}} \) :

Effective thermal conductivity (W/(m K))

\( \bar{L} \) :

Latent heat of fusion of mixture phase (J/kg)

\( L_{\text{S}} \) :

Sulfur partition ratio

\( \vec{n} \) :

Normal vector

\( p \) :

Pressure (Pa)

\( Q_{\text{J}} \) :

Joule heating density (W/m3)

\( r_{\text{d}} \) :

Equivalent radius of non-deformed molten MM droplet (m)

\( S_{\text{r}} \) :

Source term in Eq. [1], which indicates the sulfur mass transfer rate at the interface

\( T \) :

Temperature (K)

\( T_{\ell } \) :

Liquidus temperature (K)

\( T_{\text{ref}} \) :

Reference temperature (K)

\( T_{\text{s}} \) :

Solidus temperature (K)

\( t \) :

Time (s)

\( \vec{v} \) :

Velocity (m/s)

\( \vec{v}_{\text{cast}} \) :

Casting velocity (m/s)

\( w\left[ j \right] \) :

Mass fraction of element j in molten MM (pct)

\( w\left[ {\text{S}} \right] \) :

Mass fraction of sulfur in molten MM (pct)

\( w\left( {\text{S}} \right) \) :

Mass fraction of sulfur in molten slag (pct)

\( x,y,z \) :

Cartesian coordinates

\( \alpha \) :

Volume fraction of molten MM

\( \gamma \) :

Interface tension coefficient (N/m)

\( \varepsilon \) :

Turbulent dissipation rate (m2/s3)

\( \varepsilon_{\text{s}} \) :

Dielectric constant of molten slag (F/m)

\( \varepsilon_{\text{m}} \) :

Dielectric constant of molten MM (F/m)

\( \zeta \) :

Electro-emulsification factor

\( \bar{\eta } \) :

Magnetic diffusivity of mixture phase (m2/s)

\( \mu_{0} \) :

Vacuum permeability (H/m)

\( \bar{\mu } \) :

Viscosity of mixture phase (Pa s)

\( \mu_{\text{m}} \) :

Viscosity of molten MM (Pa s)

\( \mu_{\text{s}} \) :

Viscosity of molten slag (Pa s)

\( \xi \) :

Constant coefficient in Eq. [3]

\( \bar{\rho } \) :

Density of mixture phase (kg/m3)

\( \rho_{\text{m}} \) :

Density of molten MM (kg/m3)

\( \rho_{\text{s}} \) :

Density of molten slag (kg/m3)

\( \bar{\sigma } \) :

Electrical conductivity of mixture phase (Ω−1 m−1)

\( \bar{\phi } \) :

Physical property of mixture phase

\( \phi_{\text{m}} \) :

Physical property of molten MM

\( \phi_{\text{s}} \) :

Physical property of molten slag

\( \varphi \) :

Electrical potential (V)

\( \psi \) :

Initial phase angle of AC

\( \omega \) :

Angular frequency (Hz)

References

  1. K. Hagelstein: J. Environ. Manag., 2009, vol. 90, pp. 3736-40.

    Article  CAS  Google Scholar 

  2. N. Duan, F. Wang, C.B. Zhou, C.L. Zhu, and H.B. Yu: Resour. Conserv. Recy., 2010, vol. 54, pp. 506-11.

    Article  Google Scholar 

  3. Q. Wang, R. Lu, Z.Y. Chen, G.Q. Li, and Y.X. Yang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 649-63.

    Article  Google Scholar 

  4. Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, and H.B. Li: Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 1333-44.

    Article  Google Scholar 

  5. R.B. Karyappa, A.V. Naik, and R.M. Thaokar: Langmuir, 2016, vol. 32, pp. 46-54.

    Article  CAS  Google Scholar 

  6. H.P. Yan, L.M. He, X.M. Luo, J. Wang, X. Huang, Y.L. Lü, and D.H. Yang: Langmuir, 2015, vol. 31, pp. 8275-83.

    Article  CAS  Google Scholar 

  7. T. Inomoto, Y. Ogawa, and T. Toh: ISIJ Int., 2003, vol. 43, pp. 828-35.

    Article  CAS  Google Scholar 

  8. O. Vizika and D.A. Saville: J. Fluid Mech., 1992, vol. 239, pp. 1-21.

    Article  CAS  Google Scholar 

  9. T.C. Scott and C.H. Byers: Chem. Eng. Comm., 1989, vol. 77, pp. 67-89.

    Article  CAS  Google Scholar 

  10. H. Wang, Y.B. Zhong, Q. Li, Y.P. Fang, W.L. Ren, Z.S. Lei, and Z.M. Ren: ISIJ Int., 2016, vol. 56, pp. 255-63.

    Article  CAS  Google Scholar 

  11. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, and J. Bohacek: Steel Res. Int., 2018, vol. 89, 1700100.

    Article  Google Scholar 

  12. F.B. Liu, J. Yu, H.B. Li, Z.H. Jiang, and X. Geng: Steel. Res. Int., 2020, vol. 91, 1900628.

    Article  CAS  Google Scholar 

  13. E. Karimi-Sibaki, A. Kharicha, A. Vakhrushev, M. Wu, A. Ludwig, and J. Bohacek: Electrochem. Commun., 2020, vol. 112, 106675.

    Article  CAS  Google Scholar 

  14. Q. Wang, Y. Liu, G.Q. Li, Y.M. Gao, Z. He, and B.K. Li: Appl. Them. Eng., 2018, vol. 129, pp. 378-88.

    Article  CAS  Google Scholar 

  15. X.H. Wang and Y. Li: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1837-49.

    Article  Google Scholar 

  16. K. Fezi, J. Yanke, M.J.M. Krane: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 766-79.

    Article  Google Scholar 

  17. J. Yanke, K. Fezi, R.W. Trice, and M.J.M. Krane: Numer. Heat Tr. A-Appl., 2015, vol. 67, pp. 268-92.

    Article  Google Scholar 

  18. Q. Wang, Y. Liu, F. Wang, Y.L. Cao, and G.Q. Li: Metals, 2019, vol. 9, 751.

    Article  Google Scholar 

  19. Q. Wang, Z. He, G.Q. Li, B.K. Li, C.Y. Zhu, and P.J. Chen: Int. J. Heat Mass Transfer, 2017, vol. 104, pp. 943-51.

    Article  CAS  Google Scholar 

  20. W.G. Whitman: Int. J. Heat Mass Transfer, 1962, vol. 5, pp. 429-33.

    Article  Google Scholar 

  21. P.G. Jönsson and L.T.I. Jonsson: ISIJ Int., 2001, vol. 41, pp. 1289–302.

    Article  Google Scholar 

  22. W.T. Lou and M.Y. Zhu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1706–22.

    Article  Google Scholar 

  23. C.B.J. Fincham and F.D. Richardson: Proc. R. Soc. Lond. Ser. A, 1954, vol. 223, pp. 40-62.

    Article  CAS  Google Scholar 

  24. R.W. Young, J.A. Duffy, G.J. Hassall, and Z. Xu: Ironmak. Steelmak., 1992, vol. 19, pp. 201-19.

    CAS  Google Scholar 

  25. E. Ichise and A. Moro-Oka: Trans. ISIJ, 1988, vol. 28, pp. 153-63.

    Article  CAS  Google Scholar 

  26. K. Takahashi and M. Hino: High Temp. Mater. Process., 2000, vol. 19, pp. 1-10.

    Article  Google Scholar 

  27. S. Torza, R.G. Cox, and S.G. Mason: Philos. Trans. R. Soc. A, 1972, vol. 269, pp. 295-319.

    Google Scholar 

  28. C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-25.

    Article  Google Scholar 

  29. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335-54.

    Article  CAS  Google Scholar 

  30. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 42B, pp. 271-80.

    Article  Google Scholar 

  31. Q. Wang, Z. He, B.K. Li, and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2425-41.

    Article  Google Scholar 

  32. C. Byon: Int. J. Heat Mass Transfer, 2014, vol. 88, pp. 20-7.

    Article  Google Scholar 

  33. M.R. Aboutalebi, M. Hasan, and R.I.L. Guthrie: Numer. Heat Tr. A-Appl., 1995, vol. 28, pp. 279-97.

    Article  Google Scholar 

  34. Q. Wang, Z. He, G.Q. Li, and B.K. Li: Appl. Them. Eng., 2016, vol. 103, pp. 419-27.

    Article  CAS  Google Scholar 

  35. H. Wang, Y.B. Zhong, Q. Li, Y.P. Fang, W.L. Ren, Z.S. Lei, and Z.M. Ren: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 655-63.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of this study by the National Natural Science Foundation of China (Grant No. 51804227). The industrial experiment was also supported by the Hubei Rising Technology Co., Ltd., China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 5, 2020; accepted October 8, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, Y., Lu, R. et al. Influence of Electro-Emulsification on Desulfurization of Rejected Electrolytic Manganese Metal in Electroslag Remelting Process. Metall Mater Trans B 52, 107–122 (2021). https://doi.org/10.1007/s11663-020-02005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02005-5

Navigation