Skip to main content
Log in

Numerical Study of Evaporation Behavior of Molten Manganese Metal During Electroslag Recycling Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electroslag remelting (ESR) technology has been adopted to recycle the rejected electrolytic manganese metal scrap. In this study, a transient 3D coupled numerical model accounting for the electromagnetism, multiphase flow, heat transfer, and solidification was elaborated and used to simulate the evaporation behavior of the molten manganese metal (MM) during the ESR process. The volume of fluid approach was employed to capture the interfaces between the gaseous manganese, molten slag, and molten MM. The evaporation rate of the molten MM was defined by applying the Lee model, while the enthalpy-porosity formulation described the solidification. An industrial experiment via a commercial-scale ESR furnace was conducted for the model validation. The research findings indicate that the molten MM’s evaporation occurs during the droplet falling and in the metal pool. Then, gaseous manganese bubbles ascend to the molten slag-free surface, thus promoting the melt movement, especially the slag-metal pool interface fluctuation. The evaporation rate of the molten MM is promoted by the increased applied current and the reduced ambient gauge pressure. The recycling ratio drops from 81.75 to 71.79 pct with the applied current increase from 3000 to 4000 A and drops from 78.19 to 73.71 pct with the ambient gauge pressure reduction from 0 to − 1000 Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\( \vec{A} \) :

Magnetic potential vector (V s/m)

A mg :

Specific surface area of a gaseous manganese bubble (m−1)

A mush :

Mushy zone resistance constant

\( \vec{B} \) :

Magnetic flux density (T)

\( \bar{c}_{p} \) :

Specific heat of mixture phase at constant pressure (J/(kg K))

\( \vec{D} \) :

Electric flux density (C/m2)

\( \vec{E} \) :

Electric field intensity (V/m)

\( \vec{F}_{D} \) :

Damping force (N/m3)

\( \vec{F}_{L} \) :

Lorentz force (N/m3)

\( \vec{F}_{S} \) :

Solute buoyancy force (N/m3)

\( \vec{F}_{ST} \) :

Interfacial tension (N/m3)

\( \vec{F}_{T} \) :

Thermal buoyancy force (N/m3)

f :

Liquid fraction

\( \bar{H} \) :

Enthalpy of mixture phase (J)

\( \vec{H} \) :

Magnetic field intensity (A/m)

\( \bar{h} \) :

Sensible enthalpy of mixture phase (J)

h f g :

Formation enthalpy of gaseous manganese (J)

h f m :

Formation enthalpy of molten MM (J)

\( \bar{h}_{ref} \) :

Reference sensible enthalpy of mixture phase (J)

\( \vec{J} \) :

Current density (A/m2)

k T :

Effective thermal conductivity (W/(m K))

\( \bar{L}_{f} \) :

Latent heat of fusion of mixture phase (J/kg)

L mg :

Latent heat of vaporization (J/kg)

M m :

Molecular weight of manganese

\( \dot{m}_{mg} \) :

Evaporation rate from molten MM to gaseous manganese (kg/s)

p :

Local static pressure (Pa)

p msat :

Saturated vapor pressure of manganese (Pa)

Q e :

Heat dissipation by evaporation (W)

Q J :

Joule heating (W)

Q m :

Heat dissipation by melting (W)

R :

Ideal gas constant (J/(mol K))

T :

Temperature (K)

T msat :

Saturated temperature of manganese (K)

T :

Liquidus temperature (K)

T ref :

Reference temperature (K)

t :

Time (s)

\( \vec{v} \) :

Velocity (m/s)

\( \vec{v}_{cast} \) :

Casting velocity (m/s)

α g :

Volume fraction of gaseous manganese

α m :

Volume fraction of molten MM

α s :

Volume fraction of molten slag

β :

Accommodation coefficient

\( \bar{\mu }_{0} \) :

Vacuum permeability of mixture phase (H/m)

\( \bar{\mu } \) :

Viscosity of mixture phase (Pa s)

\( \bar{\rho } \) :

Density of mixture phase (kg/m3)

ρ g :

Density of gaseous manganese (kg/m3)

ρ m :

Density of molten MM (kg/m3)

ρ s :

Density of molten slag (kg/m3)

\( \bar{\sigma } \) :

Electrical conductivity of mixture phase (Ω−1 m−1)

\( \bar{\phi } \) :

Physical property of mixture phase

ϕ g :

Physical property of gaseous manganese

ϕ m :

Physical property of molten MM

ϕ s :

Physical property of molten slag

φ :

Electrical potential (V)

References

  1. 1.K. Hagelstein: J. Environ. Manag., 2009, vol. 90, pp. 3736-40.

    Article  CAS  Google Scholar 

  2. 2.N. Duan, F. Wang, C.B. Zhou, C.L. Zhu, and H.B. Yu: Resour. Conserv. Recy., 2010, vol. 54, pp. 506-11.

    Article  Google Scholar 

  3. 3.V.S. Prasad, A.S. Rao, U. Prakash, V.R. Rao, P.K. Rao, and K.M. Gupt: ISIJ Int., 1996, vol. 36(12), pp. 1459-64.

    Article  CAS  Google Scholar 

  4. 4.Q. Wang, R. Lu, Z.Y. Chen, G.Q. Li, and Y.X. Yang: Metall. Mater. Trans. B, 2020, vol. 51B(2), pp. 649-63.

    Article  Google Scholar 

  5. C.L. Zhuang, J.H. Liu, C. Bernhard, and P. Presoly: J. Iron Steel Res. Int., 2015, vol. 22, pp. 709-14.

    Article  Google Scholar 

  6. 6.R. Ohno: Trans. ISIJ, 1977, vol. 17, pp. 732-41.

    Article  CAS  Google Scholar 

  7. 7.L.Z. Kong, Z.Y. Deng, and M.Y. Zhu: Special Steel, 2018, vol. 39(4), pp. 17-9.

    Google Scholar 

  8. 8.L. Song, M. Wang, X. Lin, Z.B. Gao, X.H. Li, and Y.P. Bao: Chin. J. Eng., 2020, vol. 42(3), pp. 331-39.

    Google Scholar 

  9. 9.H. Shi, M.J. Tu, Q.P. Chen, and H.F. Shen: Int. J. Heat Mass Transfer, 2020, vol. 158, 119713.

    Article  Google Scholar 

  10. 10.E. Karimi-Sibaki, A. Kharicha, A. Vakhrushev, M. Wu, A. Ludwig, and J. Bohacek: Electrochem. Commun., 2020, vol. 112, 106675.

    Article  CAS  Google Scholar 

  11. 11.P.M. Tang, H.Q. Xie, S. Wang, X.P. Ding, Q. Zhang, H.L. Ma, J. Yang, S.Q. Fan, M.J. Long, D.F. Chen, and X.M. Duan: Metall. Mater. Trans. B, 2019, vol. 51B(5), pp. 2273-83.

    Article  Google Scholar 

  12. 12.Z. Chen, Y. Xiang, Z.Y. Wei, P. Wei, B.H. Lu, L.J. Zhang, and J. Du: Appl. Phys. A, 2018, vol. 124, 313.

    Article  Google Scholar 

  13. 13.P. Wei, Z.Y. Wei, Z. Chen, Y.Y. He, and J. Du: Appl. Phys. A, 2017, vol. 123, 604.

    Article  Google Scholar 

  14. 14.C.L. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah: Acta Mater., 2015, vol. 96, pp. 72-9.

    Article  CAS  Google Scholar 

  15. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, and J. Bohacek: Steel Res. Int., 2018. 89: 1700100.

    Article  Google Scholar 

  16. 16.K. Mills and M.X. Guo: ISIJ Int., 2014, vol. 54(9), pp. 2000-07.

    Article  CAS  Google Scholar 

  17. 17.P.M. Nasch and S.G. Steinemann: Phys. Chem. Liq., 1995, vol. 29(1), pp. 43-58.

    Article  CAS  Google Scholar 

  18. 18.L. Blacha, R. Burdzik, A. Smalcerz, and T. Matuła: Arch. Metall. Mater., 2013, vol. 58(1), pp. 197-201.

    Article  CAS  Google Scholar 

  19. 19.S.C. Duan and H.J. Guo: Steel Res. Int., 2020, vol. 91, 1900634.

    Article  CAS  Google Scholar 

  20. 20.V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B(3), pp. 271-80.

    Article  CAS  Google Scholar 

  21. 21.B.K. Li, B. Wang and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B(3), pp. 1122-32.

    Article  Google Scholar 

  22. 22.X.H. Wang and Y. Li: Metall. Mater. Trans. B, 2015, vol. 46B(4), pp. 1837-49.

    Article  Google Scholar 

  23. 23.Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 46B(6), pp. 933-52..

    Google Scholar 

  24. 24.A. Bansal, P. Chapelle, Y. Delannoy, E. Waz, P.L. Brun, and J.P. Bellot: Metall. Mater. Trans. B, 2015, vol. 46B(3), pp. 2096-109.

    Article  Google Scholar 

  25. 25.Q. Cao and L. Nastac: Metall. Mater. Trans. B, 2018, vol. 49B(1), pp. 1388-404.

    Article  Google Scholar 

  26. 26.C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39(1), pp. 201-25.

    Article  Google Scholar 

  27. 27.J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100(2), pp. 335-54.

    Article  CAS  Google Scholar 

  28. 28.J. Safarian and T.A. Engh: Metall. Mater. Trans. A, 2013, vol. 44A(2), pp. 747-53.

    Article  Google Scholar 

  29. 29.Ł. Słupik, A. Fic, Z. Buliński, A. Nowak, L. Kosyrczyk, and G. Łabojko: Fuel, 2015, vol. 150, pp. 415-24.

    Article  Google Scholar 

  30. 30.H. Lee, C.R. Kharangate, N. Mascarenhas, and I.P.I. Mudawar: Int. J. Heat Mass Transfer, 2015, vol. 85, pp. 865-79.

    Article  CAS  Google Scholar 

  31. 31.E. Platacis, I. Kaldre, E. Blumbergs, L. Goldšteins, and V. Serga: Sci. Rep., 2019, vol. 9, 17566.

    Article  Google Scholar 

  32. 32.J. Yu, F.B. Liu, H.B. Li, Z.H. Jiang, Y. Li, C.P. Kang, A. Wang, W.C. Zhang, and H. Feng: Metall. Mater. Trans. B, 2019, vol. 50B(6), pp. 3112-24.

    Article  Google Scholar 

  33. 33.E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, and J. Bohacek: Metall. Mater. Trans. B, 2020, vol. 51B(3), pp. 871-79.

    Article  Google Scholar 

  34. 34.F. Wang, Q. Wang, J. Baleta, and B.K. Li: JOM, 2019, vol. 71(11), pp. 4198-205.

    Article  Google Scholar 

  35. 35.Ya. Kompan, I. Protokovilov, Y. Fautrelle, Yu. Gelfgat, and A. Bojarevics: Magnetohydrodynamics, 2010, vol. 46(3), pp. 317-24.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the National Natural Science Foundation of China (Grant No. 51804227). The industrial experiment was also supported by the Hubei Rising Technology Co., Ltd., China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 21, 2020; accepted November 11, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Lu, R., Wang, F. et al. Numerical Study of Evaporation Behavior of Molten Manganese Metal During Electroslag Recycling Process. Metall Mater Trans B 52, 665–675 (2021). https://doi.org/10.1007/s11663-020-02036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02036-y

Navigation