Skip to main content
Log in

A Review of Permanent Magnet Stirring During Metal Solidification

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. [16]

Fig. 2

Reprinted with permission from Ref. [16]

Fig. 3

Reprinted with permission from Ref. [22]

Fig. 4

Reprinted with permission from Ref. [29]

Fig. 5

Reprinted with permission from Ref. [30]

Fig. 6

Reprinted with permission from Ref. [13]

Fig. 7

Reprinted with permission from Ref. [13]

Fig. 8

Reprinted with permission from Ref. [15]

Fig. 9

Reprinted with permission from Refs. [41] and [42]

Fig. 10

Reprinted with permission from Refs. [47] and [41]

Fig. 11

Reprinted with permission from Refs. [48] and [41]

Fig. 12

Reprinted with permission from Ref. [41]

Fig. 13

Reprinted with permission from Ref. [41]

Fig. 14

Reprinted with permission from Ref. [55]

Fig. 15

Reprinted with permission from Ref. [58]

Fig. 16

Reprinted with permission from Ref. [41]

Fig. 17

Reprinted with permission from Refs. [60] and [16]

Fig. 18

Reprinted with permission from Ref. [62]

Fig. 19

Reprinted with permission from Ref. [16]

Fig. 20

Reprinted with permission from Refs. [60] and [16]

Fig. 21

Reprinted with permission from Ref. [11]

Fig. 22

Reprinted with permission from Ref. [12]

Fig. 23

Reprinted with permission from Ref. [30]

Fig. 24

Reprinted with permission from Ref. [13]

Fig. 25

Reprinted with permission from Ref. [13]

Similar content being viewed by others

Abbreviations

EMS:

Electromagnetic stirring

PMS:

Permanent magnet stirring

AC:

Alternating current

RMF:

Rotating magnetic field

n :

Rotation speed or rotating velocity, rpm

B :

Magnetic flux densities, T

B 0 :

Magnetic flux density associated with magnet, T

T m :

Modulation period, s

ψ(x, y, z):

Shape function of magnet

x :

Distance from the magnet, m

f :

Stirring frequency, Hz

μ :

Magnetic permeability of the melt, H/m

σ :

Electrical conductivity, 1/(Ω·m)

ω :

Angular frequency, rad/s

R :

Radius, m

δ :

Electromagnetic skin depth, m

q :

The number of pairs of poles

F :

Magnetic body force, kN/m3

F θ :

Tangential component of Lorentz force, kN/m3

Ha :

Hartmann number

Ta :

Magnetic Taylor number

Re w :

Magnetic Reynolds number

ρ :

Density of the melt, kg/m3

v :

Kinematic viscosity, m2/s

CET:

Columnar to equiaxed transition

DC:

Direct current

M-EMS:

Mold electromagnetic stirring

F-EMS:

Final electromagnetic stirring

F-PMS:

Final position permanent magnet stirring

UDV:

Ultrasonic Doppler velocimetry

DAS:

Dendrite arm spacing, μm

\( \overrightarrow {H} \) :

Magnetic field intensity, A/m

\( \overrightarrow {J} \) :

Induction current intensity, A/m2

\( \overrightarrow {D} \) :

Electric displacement vector, C/m2

\( \overrightarrow {E} \) :

Electric field intensity, V/m

\( \overrightarrow {F} \) :

Electromagnetic force per unit volume, N/m3

\( \overrightarrow {V} \) :

Velocity of metal, m/s

P :

Pressure, Pa

μ eff :

Effective viscosity, Pa s

μ t :

Turbulent viscosity, Pa s

\( \overrightarrow {g} \) :

Gravitational acceleration, m/s2

\( \overrightarrow {F}_{\text{M}} \) :

Time averaged electromagnetic force, N/m3

\( \overrightarrow {F}_{\text{other}} \) :

Other interaction force, N/m3

References

  1. K. H. Spitzer, M. Dubke, and K. Schwerdtfeger: Metall. Trans. B, 1986, vol. 17, pp. 119-31.

    Article  Google Scholar 

  2. S. Asai: ISIJ Int., 1989, vol. 29, pp. 981-92.

    Article  Google Scholar 

  3. C. Vives: Mater. Sci. Eng. A, 1993, vol. 173, pp. 169-72.

    Article  Google Scholar 

  4. E. Çadırlı, H. Kaya, D. Räbiger, S. Eckert, and M. Gündüz: J. Alloys Comp., 2015, vol. 647, pp. 471-80.

    Article  Google Scholar 

  5. T. Campanella, C. Charbon, and M. Rappaz: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3201-10.

    Article  Google Scholar 

  6. J.M.D. Coey: J. Magn. Magn. Mater., 2002, vol. 248, pp. 441-56.

    Article  Google Scholar 

  7. I. Bucenieks, K. Kravalis, and R. Krishbergs: Magnetohydrodynamics, 2007, vol. 47, pp. 97–104.

    Google Scholar 

  8. Q. Yao, Z. Luo, Y. Li, F.Y. Yan, and R. Duan: Mater. Des., 2014, vol. 63, pp. 200-07.

    Article  Google Scholar 

  9. O. Ben-David, A. Levy, B. Mikhailovich, and A. Azulay: Int. J. Heat Mass Transfer, 2015, vol. 81, pp. 373-82.

    Article  Google Scholar 

  10. A. Bojarevičs, T. Beinerts, M. Sarma, and Y. Gelfgat: Journal for Manufacturing Science and Production, 2015, vol. 15, pp. 35-39.

    Google Scholar 

  11. A. Kawami, Y. Maruta, S. Kameko, T. Adachi, and M. Nakatani: Trans. of ISIJ, 1982, vol. 22, p. B46, presented at the 102nd ISIJ Meeting, 1981, Lecture No. S835.

  12. T. Hagiwara, M. Taki, K. Kimura, M. Takeuchi, and M. Nakatani: Trans. of ISIJ, 1982, vol. 22, p. B47, presented at the 102nd ISIJ Meeting, 1981, Lecture No. S836.

  13. J. Zeng, W.Q. Chen, S.L. Zhang, Y. Li, and Q.L. Wang: ISIJ Int., 2015, vol. 55, pp. 2142-49.

    Article  Google Scholar 

  14. M. Garnier: Tetsu-to-Hagane, 1985, vol. 16, pp. 1846-57.

    Article  Google Scholar 

  15. A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zimmermann, and Y. Fautrelle: Metall. Mater. Trans. B, 2010, vol. 41, pp. 193-08.

    Article  Google Scholar 

  16. F. Otsubo, S. Nishida, and H. Era: Mater. Trans., 2014, vol. 55, pp. 806-12.

    Article  Google Scholar 

  17. R. Moreau: Magnetohydrodynamics, Kluwer Publications, Dordrecht, The Netherlands, 1990.

    Book  Google Scholar 

  18. J. Mulcahy and L. Beitelman: Iron Steel Eng., 1984, vol. 61, pp. 49-57.

    Google Scholar 

  19. J. Priede and Yu.M. Gelfgat: Magnetohydrodynamics, 1996, vol. 32, pp. 249-56.

    Google Scholar 

  20. S.N. Tewari, R. Shah, and H. Song: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1535-44.

    Article  Google Scholar 

  21. P.A. Nikrityuk, K. Eckert, and R. Grundmann: Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 1501-15.

    Article  Google Scholar 

  22. B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 402, pp. 55-65.

    Article  Google Scholar 

  23. I. Grants and G. Gerbeth: J. Fluid Mech., 2001, vol. 431, pp. 407-26.

    Article  Google Scholar 

  24. E. Votyakov and E. Zienicke: Fluid Dyn. Mater. Proc., 2007, vol. 1, pp. 101-17.

    Google Scholar 

  25. F.C. Chang, J.R. Hull, and L. Beitelman: Metall. Mater. Trans. B, 2004, vol. 35, pp. 1129-37.

    Article  Google Scholar 

  26. X.P. Song, S.S. Cheng, and Z.J. Cheng: Ironmak. Steelmak., 2013, vol. 40, pp. 189-198.

    Article  Google Scholar 

  27. Cobham CTS Ltd., Opera-3d Reference Manual, Oxford OX5 1JE, England, 2011.

  28. B.G. Thomas and L. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181-93.

    Article  Google Scholar 

  29. B. Wu, P. Yu, T. Dai, and Z. Li: Special Casting & Nonferrous Alloys, 1999, vol. supplement 1, pp. 1–4.

  30. J. Zeng, W.Q. Chen, and S. Zhang: Metall. Res. Technol., 2016, vol. 113, p. 609.

    Article  Google Scholar 

  31. B. Mao, G.F. Zhang, and A.W. Li, Theory and Technology of Electromagnetic Stirring for Continuous Casting, Metallurgical Industry Press, Beijing, 2012, pp. 170.

    Google Scholar 

  32. A. Bojarevičs and T. Beinerts: Magnetohydrodynamics, 2010, vol. 46, pp. 333-38.

    Google Scholar 

  33. B. Mikhailovich, O. Ben-David, and A. Levy: Magnetohydrodynamics, 2015, vol. 51, pp. 171-76.

    Google Scholar 

  34. O. Ben-David, A. Levy, B. Mikhailovich, and A. Azulay: Physics of Fluids, 2014, vol. 26, pp. 97-104.

    Article  Google Scholar 

  35. I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins: J. Cryst. Growth, 2014, vol. 402, pp. 230-33.

    Article  Google Scholar 

  36. S.W. Oh, J.W. Bae, and C.G. Kang: J. Mater. Eng. Perform., 2008, vol. 17, pp. 57-63.

    Article  Google Scholar 

  37. J. Partinen, N. Saluja, J. Szekely, and J. Kirtley Jr.: ISIJ Int., 1994, vol. 34, pp. 707–14.

  38. Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, and R. Novakovic: Journal of Chemical & Engineering Data, 2014, vol. 59, pp. 757-63.

    Article  Google Scholar 

  39. T. Li, X. Lin, and W. Huang: Acta Mater., 2006, vol. 54, pp. 4815-24.

    Article  Google Scholar 

  40. X. Zhang, Q. Zhao, J. Guo, Q. Xing, L. Deng, X. Hou, and C. Fang: Acta Metall. Sin., 2013, vol. 26, pp. 345–51.

    Article  Google Scholar 

  41. J. Zeng, W.Q. Chen, W. Yan, Y.D. Yang, and A. McLean: Mater. Des., 2016, vol. 108, pp. 364–73.

    Article  Google Scholar 

  42. X. Meng, C. Chen, Z. Hong, and J. Wang: Science in China Series E, 2006, vol. 49, pp. 274-82.

    Article  Google Scholar 

  43. K.H. Müller, G. Krabbes, J. Fink, S. Gruß, A. Kirchner, G. Fuchs, and L. Schultz: J. Magn. Magn. Mater., 2001, vol. 226, pp. 1370-76.

    Article  Google Scholar 

  44. Y. Li, Z. Luo, F. Yan, R. Duan, and Q. Yao: Mater. Des., 2014, vol. 56, pp. 1025–33.

    Article  Google Scholar 

  45. S. Eckert, B. Willers, P.A. Nikrityuk, K. Eckert, U. Michel, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 413, pp. 211-16.

    Article  Google Scholar 

  46. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75-83.

    Article  Google Scholar 

  47. X.D. Wang, T.J. Li, Y. Fautrelle, M.D. Dupouy, and J.Z. Jin: J. Cryst. Growth, 2005, vol. 275, pp. e1473-e79.

    Article  Google Scholar 

  48. Z. Chen, C.L. Chen, X.L. Wen, J.H. Zhu, and W.S. Gao: Chinese Sci. Bull., 2008, vol. 53, pp. 2575-81.

    Google Scholar 

  49. J. Li, B. Wang, Y. Ma, and J. Cui, Mater. Sci. Eng. A, 2006, vol. 425, pp. 201-04.

    Article  Google Scholar 

  50. M. Nakada, K. Mori, S.I. Nishioka, K. Tsutsumi, H. Murakami, and Y. Tsuchida: ISIJ Int., 1997, vol. 37, pp. 358-64.

    Article  Google Scholar 

  51. H.Q. Yu and M.Y. Zhu: Ironmak. Steelmak., 2012, vol. 39, pp. 574-84.

    Article  Google Scholar 

  52. K.S. Oh and Y.W. Chang: ISIJ Int., 1995, vol. 35, pp. 866-75.

    Article  Google Scholar 

  53. B. Willers, S. Eckert, P.A. Nikrityuk, D. Räbiger, J. Dong, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2008, vol. 39, pp. 304-16.

    Article  Google Scholar 

  54. D. Räbiger, S. Eckert, and G. Gerbeth: Experiments in fluids, 2010, vol. 48, pp. 233-44.

    Article  Google Scholar 

  55. A. Bojarevičs, T. Beinerts, M. Sarma, and Y. Gelfgat: Journal of Siberian Federal University. Engineering & Technologies, 2015, vol. 8, pp. 569-75.

    Article  Google Scholar 

  56. X. Wang, Y. Fautrelle, J. Etay, and R. Moreau: Metall. Mater. Trans. B, 2009, vol.40, pp. 82-90.

    Article  Google Scholar 

  57. M. Rivero, S. Cuevas, and E. Ramos: Experimental Thermal and Fluid Science, 2016, vol. 78, pp. 30-40.

    Article  Google Scholar 

  58. S. Wang, X., Wang, M. Ni, X. Zhang, Z. Wang, and X. Na: Acta Metall. Sin., 2013, vol. 49, pp. 544–52.

  59. Z. Yan, M. Chen, Y. Teng, J. Yang, L. Yang, and H. Gao, J. Mater. Eng. Perform., 2015, vol. 24, pp. 1059-64.

    Article  Google Scholar 

  60. C. Vives: Metall. Trans. B, 1992, vol. 23, pp. 189-206.

    Article  Google Scholar 

  61. C. Vives: Metall. Trans. B, 1993, vol. 24, pp. 493-10.

    Article  Google Scholar 

  62. S. Ordóñez, O. Bustos, and R. Colas: International Journal of Metalcasting, 2009, vol. 3, pp. 37-41.

    Article  Google Scholar 

  63. A. Ohno: Solidification: the separation theory and its practical applications. Springer, 2012.

  64. A. Vogel and B. Cantor: J. Cryst. Growth, 1997, vol. 37, pp. 309-16.

    Article  Google Scholar 

  65. R.D. Doherty, H.I. Lee, and E.A. Feest: Mater. Sci. Eng., 1984, vol. 65, pp. 181-89.

    Article  Google Scholar 

  66. M.C. Flemings: Metall. Trans. B, 1991, vol. 22, pp. 269-93.

    Article  Google Scholar 

  67. W.D. Griffiths and D.G. McCartney: Mater. Sci. Eng. A, 1996, vol. 216, pp. 47-60.

    Article  Google Scholar 

  68. P.M. Geffroy, M. Lakehal, J. Goñi, E. Beaugnon, J.M. Heintz, and J.F. Silvain: Metall. Mater. Trans. A, 2006, vol. 37, pp. 441-47.

    Article  Google Scholar 

  69. T. Suzuki, Y. Sasaki, T. Umeda, and Y. Kimura: Tetsu-to-Hagane, 1979, vol. 65, pp. 377-82.

    Article  Google Scholar 

  70. A. Bojarevics, T. Beinerts, Y. Gelfgat, and I. Kaldre: Int. J. Cast Metal Res., 2016, vol. 29, pp. 154-57.

    Article  Google Scholar 

  71. T.K. Kalnin, R.A. Petrovicha, and E.V. Priedniek: Magnetohydrodynamics, 1970, vol. 6, pp. 141-42.

    Google Scholar 

  72. I.E. Bucenieks: Magnetohydrodynamics, 2003, vol. 39, pp. 411-418.

    Google Scholar 

  73. Z.Y. Fan: Application of regenerative combustion and permanent magnet stirring technology in aluminum melting furnace, Xi’an, Xi`an University of Architecture and Technology, 2010.

  74. J. Zeng and W. Chen: High Temp. Mater. Proc., 2015, vol. 34, pp. 577–83

    Article  Google Scholar 

  75. S.K. Choudhary and A. Ghosh: ISIJ Int., 1994, vol. 34, pp. 338-45.

    Article  Google Scholar 

  76. V. Ludlow, A. Normanton, A. Anderson, M. Thiele, J. Ciriza, J. Laraudogoitia, and W.V. Knoop: Ironmak. Steelmak., 2005, vol. 32, pp. 68-74.

    Article  Google Scholar 

  77. A.A. Tzavaras and J.F. Wallace: J. of Cryst. Growth, 1972, vol. 13, pp. 782-86.

    Article  Google Scholar 

  78. D.J.Hurtuk and A.A. Tzavaras: Metall. Mater. Trans. B, vol. 8, pp. 243–51.

  79. S.I. Chung and J.K. Yoon: Ironmak. Steelmak., 1996, vol. 23, pp. 425-32.

    Google Scholar 

  80. J. Zeng, W. Chen, Q. Wang, and G. Wang: Trans. Indian Inst. Met., 2016, vol. 69, pp. 1623-32

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the China Scholarship Council for Jie Zeng’s study at the University of Toronto is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zeng.

Additional information

Manuscript submitted February 20, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Chen, W., Yang, Y. et al. A Review of Permanent Magnet Stirring During Metal Solidification. Metall Mater Trans B 48, 3083–3100 (2017). https://doi.org/10.1007/s11663-017-1077-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1077-7

Keywords

Navigation