Skip to main content
Log in

Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The working principle and the peculiarities of new electromagnetic rheocasters, which are based on the use of rotating permanent magnets and which allow the production of intense stirring in solidifying semisolid alloy slurries, are described. Local measurement techniques are applied to the study of the evolution of the electromagnetic, hydrodynamic, and thermal phenomena with time inside vigorously agitated melt-solid mixtures. Satisfactory performances concerning the microstructure of solidified aluminum thixotropic slurries (homogeneity, crystal shape, grain size, and fraction of primary solid) were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Br, Bθ, Bz :

magnetic field components inr, θ, and z directions, respectively

B0 :

stationary magnetic field

B :

magnetic field vector

fs :

solid fraction

Fr, Fθ, F2 :

electromagnetic body force components inr, θ, andz directions, respectively

H :

free surface height

Jr, Jθ, Jz :

electric current density components inr, θ, and z directions, respectively

N :

rotational speed of the inductor

p :

number of pair of poles

U:

velocity vector

Ur, Uθ, Uz :

velocity components inr, θ, and z directions, respectively

UM :

peak of local velocity

U′ :

linear velocity of the rotating magnetic field

W :

Joule dissipation.

Ν :

kinematic viscosity

ρ:

density of the molten alloy

Σ :

electric conductivity of the alloy

Ω0 :

angular velocity of the rotor

ΩM :

peak of the slurry angular velocity

Ω :

angular velocity of the rotating magnetic field

(U′- UM/U′:

slip

ReΩ = R2ΩM/v :

Reynolds number of rotation

References

  1. D.B. Spencer, R. Mehrabian, and M.C. Flemings:Metall. Trans., 1972, vol. 3, pp. 1925–32.

    CAS  Google Scholar 

  2. P.A. Joly and R. Mehrabian:J. Mater. Sci., 1976, vol. 11, pp. 1393–18.

    Article  CAS  Google Scholar 

  3. P.K. Rohatgi, R. Asthana, and S. Das:Int. Met. Rev., 1986, vol. 31 (3), pp. 115–39.

    CAS  Google Scholar 

  4. P.K. Rohatgi, S. Das, and T.K. Dan:J. Inst. Eng. (India), 1987, vol. 67, pp. 73–83.

    Google Scholar 

  5. A. Mortensen, J.A. Cornie, and M.C. Flemings:J. Met., 1988, vol. 40 (2), pp. 12–19.

    CAS  Google Scholar 

  6. Y. Tsunekawa, M. Okumiya, I. Niimi, and K. Yoneyama:J. Mater. Sci. Lett., 1988, vol. 7, pp. 830–32.

    Article  CAS  Google Scholar 

  7. M.C. Flemings, R. Mehrabian, and R.G. Riek: U.S. Patent No. 3, 902, 544, Sept. 1975.

  8. J. Collot:Mem. Etudes Scientifiq. Rev. Métall. (France), 1984, vol. 11, pp. 591–03.

    Google Scholar 

  9. C. Milliere and M. Suery:Mater. Sci. Technol., 1988, vol. 4, pp. 41–51.

    CAS  Google Scholar 

  10. J. Winter, J.A. Dantziz, and D.E. Tyler: U.S. Patent No. 4,434,837, Mar. 1984.

  11. O.J. Ilegbusi and J. Szekely:Metall. Trans. B, 1990, vol. 21B, pp. 183–90.

    CAS  Google Scholar 

  12. Ch. Vivès and J.-P. Riquet: U.S. Patent No. 24694, Mar. 1987.

  13. Ch. Vivès:Metall. Trans. B, 1989, vol. 20B, pp. 623–29.

    Google Scholar 

  14. Ch. Vivès:Metall. Trans. B, 1989, vol. 20B, pp. 631–43.

    Google Scholar 

  15. O.J. Ilegbusi and J. Szekely:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 97–103.

    CAS  Google Scholar 

  16. Ch. Vivès: French Patent No. 87 15817, Nov. 1987.

  17. Ch. Vivès: French Patent No. 88 04343, Mar. 1988.

  18. J.M. Molenaar, F.W. Salemans, and L. Katgerman:J. Mater. Sci., 1985, vol. 20, pp. 700–09.

    Article  CAS  Google Scholar 

  19. J.-J.A. Cheng, D. Apelian, and R.D. Doherty:Metall. Trans. A, 1986, vol. 17A, pp. 2049–62.

    CAS  Google Scholar 

  20. K. Ichikawa, S. Ishizuka, and K. Kinoshita:Trans. Jpn. Inst. Met., 1988, vol. 29 (7), pp. 598–607.

    CAS  Google Scholar 

  21. M.A. Taha, N.A. El-Mahallawy, and A.M. Assar:J. Mater. Sci., 1988, vol. 23, pp. 1379–84.

    Article  CAS  Google Scholar 

  22. M.A. Taha, N.A. El-Mahallawy, and A.M. Assar:J. Mater. Sci., 1988, vol. 23, pp. 1385–90.

    Article  CAS  Google Scholar 

  23. A. Tissier, D. Apelian, and G. Regazzoni:J. Mater. Sci., 1990, vol. 25, pp. 1184–96.

    CAS  Google Scholar 

  24. R. Ricou and Ch. Vivès:Int. J. Heat Mass Transfer, 1982, vol. 25 (10), pp. 1579–88.

    Article  CAS  Google Scholar 

  25. H.C. Lee, J.W. Evans, and Ch. Vivès:Metall. Trans. B, 1984, vol. 15B, pp. 734–36.

    Google Scholar 

  26. Ch. Vivès and R. Ricou:Metall. Trans. B, 1985, vol. 16B, pp. 377–84.

    Google Scholar 

  27. Ch. Vivès:Int. J. Heat Mass Transfer, 1990, vol. 33 (12), pp. 2585–98.

    Article  Google Scholar 

  28. Ch. Vivès:AIAA Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Washington, DC, 1983, vol. 84, pp. 387–401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vives, C. Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes. Metall Trans B 23, 189–206 (1992). https://doi.org/10.1007/BF02651854

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651854

Keywords

Navigation