Skip to main content
Log in

Dephosphorization Kinetics between Bloated Metal Droplets and Slag Containing FeO: The Influence of CO Bubbles on the Mass Transfer of Phosphorus in the Metal

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 31 October 2017

This article has been updated

Abstract

Dephosphorization kinetics of bloated metal droplets was investigated in the temperature range from 1813 K to 1913 K (1540 °C to 1640 °C). The experimental results showed that the overall mass transfer coefficient, \( {k_{\text{o}}} \), decreased with increasing temperature because of decreasing phosphorus partition ratio, \( {L_{\text{P}}} \). It was also found that the mass transfer coefficient for phosphorus in the metal, \( {k_{\text{m}}} \), had the highest value at the lowest temperature [i.e., 1813 K (1540 °C)] because the formation of smaller CO bubbles increased the rate of surface renewal, leading to faster mass transport. Meanwhile, metal droplets without carbon were also employed to study the effect of decarburization on dephosphorization. The results show that although decarburization lowers the driving force significantly, \( {k_{\text{m}}} \) (6.2 × 10−2 cm/s) for a carbon containing droplet is two orders of magnitude higher than that for carbon free droplets (5.3 × 10−4 cm/s) because of the stirring effect provided by CO bubbles. This stirring offers a faster surface renewal rate, which surpasses the loss of driving force and then leads to a faster dephosphorization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 31 October 2017

    An error occurred in the Table VI of this paper. The values used in this paper for diffusivity of phosphorus in the metal phase were incorrectly entered in Table VI. The values should be as listed in the following table.

References

  1. E. W. Mulholland, G. S. F. Hazeldean and M. W. Davies: J. Iron Steel Inst., 1973, vol. 211, pp. 632-39.

    Google Scholar 

  2. T. Gare and G.S.F. Hazeldean: Ironmak. Steelmak., 1981, vol. 4, pp. 169-81.

    Google Scholar 

  3. H. Gaye and P.V. Riboud: Metall. Trans. B, 1977, vol. 8B, pp. 409-15.

    Article  Google Scholar 

  4. D.J. Min and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23B, pp. 29-37.

    Article  Google Scholar 

  5. C.L. Molloseau and R.J. Fruehan: Metall. Trans. B, vol. 33B, 2002, pp. 335-44.

    Article  Google Scholar 

  6. E. Chen. Ph.D. Thesis, McMaster, Hamilton, CA, 2011, pp. 59–79.

  7. M. Pomeroy. Master Thesis, McMaster, Hamilton, CA, 2011, pp. 42–66.

  8. G. A. Brooks, Y. Pan, Subagyo and K.Coley: Metall. Trans. B, 2005, vol. 36B, pp. 525-35.

    Article  Google Scholar 

  9. A. Subagyo, G.A. Brooks, and K. Coley: Can. Metall. Quarterly, 2005, vol. 44 (1): 119-29.

    Article  Google Scholar 

  10. N. Dogan, G. A. Brooks and M. A. Rhamdhani: ISIJ Int., 2011, vol. 51 (7), pp. 1086-92.

    Article  Google Scholar 

  11. N. Dogan, G. A. Brooks and M. A. Rhamdhani: ISIJ Int., 2011, vol. 51 (7), pp. 1093–01.

    Article  Google Scholar 

  12. G. Brooks, B. Rout, A. Rhamdhani and Z. Li: CAMP-ISIJ, 2015, vol.28, pp. 509-12.

    Google Scholar 

  13. A. K. Hewage, B. K. Rout, G. Brooks and J. Naser: Ironmak. Steelmak., 2016, vol. 43 (5), pp. 358-70.

    Article  Google Scholar 

  14. K. Gu, N. Dogan and K. Coley: Metall. Trans. B, 2017, DOI: 10.1007/s11663-017-1000-2.

    Google Scholar 

  15. P. Wei, M. Ohya, M. Hirasawa, M. Sano and K. Mori: ISIJ.Int., 1993, vol. 33 (8), pp. 847-54.

    Article  Google Scholar 

  16. P. Wei, M. Sano, M. Hirasawa, and K. Mori: ISIJ Int., 33(3): 479-87, 1993.

    Article  Google Scholar 

  17. E. Shibata, H. Sun and K. Mori: Metall. Trans. B, 1999, vol. 30B, pp. 279-86.

    Article  Google Scholar 

  18. B. J. Monaghan, R.J. Pomfret, and K.S. Coley: Metall. Trans. B, 1998, vol. 29B, pp. 111-18.

    Article  Google Scholar 

  19. K. Gu, N. Dogan and K. Coley: Metall. Trans. B, 2017, DOI:10.1007/s11663-017-1002-0.

    Google Scholar 

  20. Z. Li, K. Mukai, M. Zeze and K. C. Mills: J. Mater. Sci., 2005, vol. 40, pp. 2191-95.

    Article  Google Scholar 

  21. K. Nakashima and K. Mori: ISIJ Int., 1992, vol. 32 (1), pp. 11-18.

    Article  Google Scholar 

  22. Y. Chung and A. Cramb: Metall. Trans. B, 2000, vol. 31B, pp. 957-71.

    Article  Google Scholar 

  23. E. Chen and K. Coley: Ironmak. Steelmak., 2010, vol. 37 (7), pp. 541-45.

    Article  Google Scholar 

  24. C. P. Manning and R. J. Fruehan: Metall. Trans. B, 2013, vol. 44B, pp. 37-44.

    Article  Google Scholar 

  25. A. Assis, J. Warnett, S. Spooner, R. Fruehan, M. Williams and S. Sridhar: Metall. Trans. B, 2015, vol. 46B, pp. 568-76.

    Article  Google Scholar 

  26. S. Spooner, A. Assis, J. Warnett, R. Fruehan, M. Williams and S. Sridhar: Metall. Trans. B, 2016, vol. 47B, pp. 2123-32.

    Article  Google Scholar 

  27. S. Zheng, W. Chen, J. Cai, J. Li, C. Chen and X. Luo: Metall. Trans. B, 2010, vol. 41B, pp. 1268-72.

    Article  Google Scholar 

  28. M. A. Rhamdhani, G. A. Brooks and K. S. Coley: Metall. Trans. B, 2005, vol. 36B, pp. 219-27.

    Article  Google Scholar 

  29. R. Higbie: Trans. Am. Inst. Chem. Eng., 1935, vol. 31, pp. 365-89.

    Google Scholar 

  30. K. Mori, Y. Fukami and Y. Kawai: Trans. ISIJ, 1988, vol.28, 315-18.

    Article  Google Scholar 

  31. T. Mori: Trans. Jpn. Inst. Met., 1984, vol. 25 (11), pp. 761-71.

    Article  Google Scholar 

  32. V. D. Eisenhuttenleute: Slag Atlas, 2nd ed., 1995, pp. 10–19.

  33. E. T. Turkdogan: ISIJ Int., 2000, vol. 40 (10), pp. 964-70.

    Article  Google Scholar 

  34. H. Ishii, and R.J. Fruehan: ISS Trans., 1997, pp. 47–54.

  35. G. Li, T. Hamano, and F. Tsukihashi: ISIJ Int., 2005, 45(1): 12-18.

    Article  Google Scholar 

  36. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai. 2009, pp. 259-64.

    Google Scholar 

  37. Y. Kawai, and Y. Shiraishi: Handbook of Phyico-chemical Properties at High Temperatures, Chapter 7, ISIJ, Tokyo, 1988, pp. 196.

  38. H. Kwak and S. Oh: J. Colloid interface Sci., 1998, vol. 198, pp.113-18.

    Article  Google Scholar 

  39. K. Gu, N. Dogan, and K. Coley: Metall. Trans. B, 2017, Unpublished research.

  40. S. D. Lubetkin: Langmuir, 2003, 19, pp. 2575-87.

    Article  Google Scholar 

  41. N. H. Ei-Kaddah and D. G. Robertson, J. Colloid interface Sci., 1977, vol. 60, pp. 349-60.

    Article  Google Scholar 

  42. K.S. Coley, E. Chen, and M. Pomeroy: Celebrating the Megascale, Wiley, Hoboken, 2014, pp. 289–02.

  43. H. S. Levine: Metall. Trans. B, 1973, vol. 4B, pp. 777-82.

    Article  Google Scholar 

  44. H. S. Levine: Metall. Trans. B, 1974, vol. 5B, pp. 953-55.

    Article  Google Scholar 

  45. C. Cicutti, M. Valdez, T. Perez, J. Petroni, A. Gomez, R. Donayo, and L. Ferro: 6th International Conference on Molten, Slags, Fluxes and Salts, 2000, p. 367.

  46. H.W. Meyer, W.F. Porter, G.C. Smith, and J. Szekel: JOM, 1968, pp. 35–42.

Download references

Acknowledgments

The authors thank member companies in McMaster Steel Research Centre and the Natural Science and Engineering Research Council of Canada (NSERC) for funding this Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kezhuan Gu or Kenneth S. Coley.

Additional information

Manuscript submitted January 26, 2017.

A correction to this article is available online at https://doi.org/10.1007/s11663-017-1113-7.

APPENDIX

APPENDIX

In the authors’ previous study,[14] it was shown that by balancing the oxygen supply from reducible oxides in the slag and oxygen consumption by carbon in the metal, the \( {{\text{P}}_{{{\text{O}}_2}}} \)at the interface between slag and liquid metal can be determined via Eq. [A1].

$$ {k_{\text{FeO}}}\left( {C_{\text{FeO}}^{\text{b}} - C_{\text{FeO}}^i} \right) = \frac{1}{A}\frac{{{\text{d}}{n_{\text{CO}}}}}{{{\text{d}}t}} $$
(A1)

Here, \( \frac{{{\text{d}}{n_{\text{CO}}}}}{{{\text{d}}t}} \) is the CO generation rate (mole/s), \( {C_{\text{FeO}}} \) is the concentration of FeO, \( A \) is the surface area of the droplet, \( {k_{\text{FeO}}} \) describes oxygen transport in the slag conceptually defined as the mass transfer coefficient for FeO. \( C_{\text{FeO}}^i \) may be expressed in terms of activity of oxygen at the interface and \( C_{\text{FeO}}^{\text{b}} \) expressed as a function of the initial concentration of FeO modified by the amount reduced (\( {\text{d}}{n_{\text{FeO}}} \)). If one makes these substitutions, and further recognizes that \( {\text{d}}{n_{\text{FeO}}} \) is equivalent to the amount of CO generated (\( {\text{d}}{n_{\text{CO}}} \)), one may rearrange Eq. [A1] to obtain Eqs. [A2] and [A3].

$$ {\text{P}}_{{{\text{O}}_{2} }}^i = \left[ {\frac{{\gamma_{\text{FeO}} K_{\text{Fe}} }}{{C_{\text{s}} *a_{\text{Fe}}^i *K_{\text{O}} }}\left( {C_{\text{FeO}}^{\text{b}} - \frac{1}{A}\frac{1}{{k_{\text{FeO}} }}\frac{{{\text{d}}n_{\text{CO}} }}{{{\text{d}}t}}} \right)} \right]^{2} $$
(A2)
$$ {\text{P}}_{{{\text{O}}_2}}^i = {\left[ {\frac{{{\gamma_{\text{FeO}}}{K_{\text{Fe}}}}}{{{C_{\text{s}}}*a_{\text{Fe}}^{\text{i}}*{K_{\text{O}}}}}\left( {C_{\text{FeO}}^{\text{o}} - \frac{1}{{{V_{\text{s}}}}}\mathop \smallint \limits_{{n_{\text{C}}}, t = {\text{initial}}}^{{n_{\text{C}}}, t = t} {\text{d}}{n_{\text{CO}}} - \frac{1}{A}\frac{1}{{{k_{\text{FeO}}}}}\frac{{{\text{d}}{n_{\text{CO}}}}}{{{\text{d}}t}}} \right)} \right]^2} $$
(A3)

where \( {K_{\text{Fe}}} \) and \( {K_{\text{O}}} \)are the equilibrium constants for FeO dissociation and oxygen dissolution in iron; \( {\gamma_{\text{FeO}}} \) is the activity coefficient for FeO in the slag, \( {C_{\text{s}}} \) is the overall molar density of the slag, and \( {V_{\text{S}}} \) is the volume of slag. The term, \( C_{\text{FeO}}^{\text{o}} - \frac{1}{{{V_{\text{s}}}}}\mathop \smallint \limits_{{n_{\text{C}}}, t = {\text{initial}}}^{{n_C}, t = t} {\text{d}}{n_{\text{C}}} \), represents the FeO content of the slag at time t. It is important to note that \( {V_{\text{s}}} \) must be defined as either the volume of dense slag or the foamy slag depending on the location of the droplet.

The middle term, \( \frac{1}{{{V_{\text{s}}}}}\mathop \smallint \limits_{{n_{\text{C}}}, t = {\text{initial}}}^{{n_{\text{C}}}, t = t} {\text{d}}{n_{\text{C}}} \), in Eq. [A3] describes the amount of carbon oxidized, which is taken from experimental measurements. To use this equation for a specific reaction time, one will be required to calculate the concentration of FeO. This instantaneous FeO concentration can be calculated from the initial concentration of FeO and the amount of carbon oxidized between time zero and time t. Using the X-ray videos, one can calculate the volume of foamy slag and dense slag at any given time, thereby determining the amount of liquid slag in each phase. Assuming no mixing between the two after the droplet is in the foamy slag, one can calculate the change in FeO for the foamy slag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, K., Dogan, N. & Coley, K.S. Dephosphorization Kinetics between Bloated Metal Droplets and Slag Containing FeO: The Influence of CO Bubbles on the Mass Transfer of Phosphorus in the Metal. Metall Mater Trans B 48, 2984–3001 (2017). https://doi.org/10.1007/s11663-017-1070-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1070-1

Keywords

Navigation