Skip to main content
Log in

Modeling of trajectory and residence time of metal droplets in slag-metal-gas emulsions in oxygen steelmaking

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In basic oxygen steelmaking, the major portion of the refining is realized through reactions between metal droplets and slag. The residence time of metal droplets in the slag crucially influences the productivity. A model for the prediction of trajectory and residence time of metal droplets in slags has been developed based on mechanics and chemical kinetics principles. When there is no decarburization, analysis of the ballistic motion of metal droplets in the slag predicts very short residence times (<1 second). This result demonstrates that when decarburization is very weak, the metal droplets spend a very short time in the slag. This could explain in part the poor kinetic behavior in the end stage of the blow. During active decarburization metal droplets normally become bloated, resulting in a decreased apparent density. Accounting for this, the ballistic model predicts residence times ranging from 10 to 200 seconds, which are much more in keeping with practical experience and previous laboratory studies. Excellent agreement between the model and laboratory measurements, combined with reasonable predictions of industrial residence times, shows that this model can be used to provide a much improved understanding of theoretical aspects of oxygen steelmaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Meyer, W.F. Porter, G.C. Smith, and J. Szekely: J. Met., 1968, July, pp. 35–42.

  2. C. Cicutti, M. Valdez, T. Pérez, J. Petroni, A. Gómez, R. Donayo, and L. Ferro: Study of Slag-Metal Reactions in an LD-LBE Converter, Proc. Slag Conf., Stockholm, 2000.

  3. E.W. Mulholland, G.S.F. Hazeldean, and M.W. Davies: J. Iron Steel Inst., 1973, vol. 211, pp. 632–39.

    CAS  Google Scholar 

  4. T. Gare and G.S.F. Hazeldean: Ironmaking and Steelmaking, 1981, No. 4, pp. 169–181.

  5. H. Gaye and P.V. Riboud: Metall. Trans. B, 1977, vol. 8B, pp. 409–15.

    CAS  Google Scholar 

  6. D.J. Min and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23B, pp. 29–37.

    CAS  Google Scholar 

  7. C.L. Molloseau and R.J. Fruehan: Metall. Trans. B, 2002, vol. 33B, pp. 335–44.

    CAS  Google Scholar 

  8. Brahma Deo, Arun Karamcheti, Amitava Paul, Pankaj Singh, and R.P. Chhabra: Iron Steel Inst. Jpn. Int., 1996, vol. 36 (6), pp. 658–66.

    CAS  Google Scholar 

  9. Subagyo and G. Brooks: Iron Steel Inst. Jpn. Int., 2002, vol. 42 (10), pp. 1182–84.

    CAS  Google Scholar 

  10. Subagyo, G.A. Brooks, and K. Coley: Can. Metall. Q., 2005, vol. 44 (1), pp. 119–29.

    CAS  Google Scholar 

  11. J. Schoop, W. Resch, and G. Mahn: Ironmaking and Steelmaking, 1978, vol. 2, pp. 72–79.

    Google Scholar 

  12. D.J. Price: in Process Engineering of Pyrometallurgy, M.J. Jones, ed., The Institution of Mining and Metallurgy, London, 1974, pp. 8–15.

    Google Scholar 

  13. B. Trentini: Trans. TMS-AIME, 1968, vol. 242, pp. 2377–88.

    Google Scholar 

  14. P. Kozakevitch: JOM, 1969, vol. 22 (7), pp. 57–68.

    Google Scholar 

  15. A. Chatterjee, N.O. Lindfors, and J.A. Wester: Ironmaking and Steelmaking, 1976, vol. 3 (1), pp. 21–32.

    CAS  Google Scholar 

  16. R.C. Urquhart and W.G. Davenport: Can. Metall. Q., 1973, vol. 12 (4), pp. 507–16.

    CAS  Google Scholar 

  17. N. Standish and Q.L. He: Iron Steel Inst. Jpn. Int., 1989, vol. 29, No. 6, pp. 455–461.

    Google Scholar 

  18. Q.L. He and N. Standish: Iron Steel Inst. Jpn. Int., 1990, vol. 30, No. 4, pp. 305–309.

    CAS  Google Scholar 

  19. Q.L. He and N. Standish: Iron Steel Inst. Jpn. Int., 1990, vol. 30, No. 5, pp. 356–361.

    CAS  Google Scholar 

  20. G. Turner and S. Jahanshahi: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 734–39.

    CAS  Google Scholar 

  21. S.C. Koria and K.W. Lange: Ironmaking and Steelmaking, 1983, vol. 10 (4), pp. 160–68.

    CAS  Google Scholar 

  22. S.C. Koria and K.W. Lange: Metall. Trans. B, 1984, vol. 15B, pp. 109–16.

    CAS  Google Scholar 

  23. S.C. Koria and K.W. Lange: Ironmaking and Steelmaking, 1986, vol. 13 (5), pp. 236–40.

    CAS  Google Scholar 

  24. Subagyo, G.A. Brooks, K.S. Coley, and G.A. Irons: Iron Steel Inst. Jpn. Int., 2003, vol. 43 (7), pp. 983–89.

    CAS  Google Scholar 

  25. Subagyo, G.A. Brooks, and K. Coley: Interfacial Area in Top Blown Oxygen Steelmaking, Steelmaking Conf. Proc., ISS, Warrendale, PA, 2002, vol. 85, pp. 749–62.

    Google Scholar 

  26. Gary J. Lastman and Naresh K. Sinha: Microcomputer-Based Numerical Methods for Science and Engineering, Saunders College Publishing, a Division of Holt, Rinehart and Winston, Inc., New York, NY, 1989, pp. 211–15.

    Google Scholar 

  27. R. Higbie: Trans. Am. Inst. Chem. Eng., 1935, vol. 35, pp. 365–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, G., Pan, Y., Subagyo et al. Modeling of trajectory and residence time of metal droplets in slag-metal-gas emulsions in oxygen steelmaking. Metall Mater Trans B 36, 525–535 (2005). https://doi.org/10.1007/s11663-005-0044-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0044-x

Keywords

Navigation