Skip to main content
Log in

Transformation of Inclusions in 430 Stainless Steel During Heat Treatment at 1473 K (1200 °C)

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To investigate the evolution mechanism of inclusions in solid 430 stainless steel during heat treatment, in this study, two kinds of experiments were performed: one was a heat treatment experiment conducted at 1473 K (1200 °C) for different times in the range of 0 to 8 hours under an argon atmosphere; the other was a diffusion couple experiment performed using a steel sample and an oxide sample to clarify the diffusion of elements at the interface between the steel matrix and inclusion during heating. The results showed that [Cr], [Mn] and [Ti] in the steel could react with SiO2 in the single-phase MgO–Al2O3–SiO2–CaO inclusion during the heat treatment at 1473 K (1200 °C), resulting in the formation of the Al2O3–TiOx–Cr2O3–MnO phase in the MgO–Al2O3–SiO2–CaO inclusion. This phenomenon was also observed and demonstrated in diffusion couple experiments. Thermodynamic calculation results indicated that when the interfacial reaction reached equilibrium, the content of the Al2O3–TiOx–Cr2O3–MnO spinel phase in the inclusion could reach more than 20 mass pct. In addition, dissolved [Ti] and [N] in the steel combined with each other and led to the precipitation of the TiN phase on the surface of the Al2O3–TiOx–Cr2O3–MnO phase during heat treatment at 1473 K (1200 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Ghosh, P. Modak, R. Dutta, and D. Chakrabarti: Mater. Sci. Eng. A., 2016, vol. 27, pp. 298–308.

    Article  Google Scholar 

  2. Y. Yin, J. Zhang, S. Lei, and Q. Dong: ISIJ Int., 2017, vol. 57, pp. 2165–74.

    Article  CAS  Google Scholar 

  3. L. Lu, J. Zhang, and K. Shiozawa: Fatigue Fract. Eng. Mater. Struct., 2010, vol. 32, pp. 647–55.

    Article  Google Scholar 

  4. M. Lee, N. Kang, S. Liu, and K. Cho: Sci. Technol. Weld. Join., 2016, vol. 21, pp. 711–9.

    Article  CAS  Google Scholar 

  5. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–14.

    Article  CAS  Google Scholar 

  6. J. Yang, L. Xu, K. Zhu, R. Wang, L. Zhou, and W. Wang: Steel Res. Int., 2015, vol. 86, pp. 619–25.

    Article  CAS  Google Scholar 

  7. B. Zhou, G. Li, X. Wan, Y. Li, and K. Wu: Met. Mater. Int., 2016, vol. 22, pp. 267–75.

    Article  CAS  Google Scholar 

  8. J.H. Park: Calphad., 2011, vol. 35, pp. 455–62.

    Article  CAS  Google Scholar 

  9. W. Liu, H.X. Zhao, S.F. Yang, and J.S. Li: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2430–40.

    Article  Google Scholar 

  10. K. Malmberg, M. Nzotta, A. Karasev, and P.G. Jonsson: Ironmak. Steelmak., 2013, vol. 40, pp. 231–7.

    Article  CAS  Google Scholar 

  11. J.C. Yan, T. Li, Z.Q. Shang, and H. Guo: Mater. Charact., 2019, vol. 158, p. 109944.

    Article  CAS  Google Scholar 

  12. D. Mazumdar: Trans. Indian Inst. Met., 2013, vol. 66, pp. 597–610.

    Article  Google Scholar 

  13. J. Han, H. Li, and H. Xu: Mater. Des., 2014, vol. 58, pp. 518–26.

    Article  CAS  Google Scholar 

  14. P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23.

    Article  Google Scholar 

  15. M.H. Lee and J.H. Park: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 877–93.

    Article  Google Scholar 

  16. J.H. Park and L.F. Zhang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2453–82.

    Article  Google Scholar 

  17. J.H. Park and Y.J. Kang: Steel Res. Int., 2017, vol. 88, p. 1700130.

    Article  Google Scholar 

  18. K. Takano, R. Nakao, S. Fukumoto, T. Tsuchiyama, and S. Takaki: Tetsu-to-Hagané., 2003, vol. 89, pp. 616–22.

    Article  CAS  Google Scholar 

  19. T. Taniguchi, N. Satoh, Y. Saito, and K. Kubota: ISIJ Int., 2011, vol. 51, pp. 1957–66.

    Article  CAS  Google Scholar 

  20. Y. Ren, L. Zhang, and P.C. Pistorius: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 1–12.

    Google Scholar 

  21. X. Shao, X. Wang, C. Ji, H. Li, Y. Cui, and G. Zhu: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 483–91.

    Article  CAS  Google Scholar 

  22. W. Choi, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1851–7.

    Article  Google Scholar 

  23. Y. Chu, W. Li, Y. Ren, and L. Zhang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 2047–62.

    Article  Google Scholar 

  24. D. Rabbe: Mater. Sci. Technol. Lond., 1995, vol. 11, pp. 461–8.

    Article  Google Scholar 

  25. J. Hamada, Y. Matsumoto, F. Fudanoki, and S. Maeda: ISIJ Int., 2003, vol. 43, pp. 1989–98.

    Article  CAS  Google Scholar 

  26. C.Y. Son, C.K. Kim, D.J. Ha, S. Lee, J.S. Lee, K.T. Kim, and Y.D. Lee: Metall. Mater. Trans. A., 2007, vol. 38A, pp. 2776–87.

    Article  CAS  Google Scholar 

  27. P.D. Han, H.F. Li, X.L. Sun, W. Liang, H.B. Dong, and B.S. Xu: Ironmak. Steelmak., 2011, vol. 38, pp. 530–3.

    Article  CAS  Google Scholar 

  28. C.S. Liu, K.H. Kim, S.J. Kim, J.S. Li, S. Ueda, X. Gao, H. Shibata, and S.Y. Kitamura: Metall. Mater. Trans. B., 2015, vol. 46B, pp. 1875–84.

    Article  Google Scholar 

  29. C.S. Liu, S.F. Yang, J.S. Li, H.W. Ni, and X.L. Zhang: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 1348–57.

    Article  Google Scholar 

  30. E.A. Devi, R. Chinnappan, and C.S. Sundar: Phys. Rev. B., 2018, vol. 98, p. 144104.

    Article  CAS  Google Scholar 

  31. C.S. Liu, Y. Kacar, B. Webler, and P.C. Pistorius: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2837–41.

    Article  Google Scholar 

  32. C.S. Liu, D. Kumar, B.A. Webler, and P.C. Pistorius: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 529–42.

    Article  Google Scholar 

  33. B. Wang, X. Liu, and G. Wang: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 2124–38.

    Article  Google Scholar 

  34. Y. Kang, J. Jang, J.H. Park, and C. Lee: Met. Mater. Int., 2014, vol. 20, pp. 119–27.

    Article  CAS  Google Scholar 

  35. Y. Kang, S. Jeong, J.H. Kang, and C. Lee: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 2842–54.

    Article  Google Scholar 

  36. H. Nako, H. Hatano, Y. Okazaki, H. Hatato, K. Yamashita, and H. Takauchi: ISIJ Int., 2014, vol. 54, pp. 1690–6.

    Article  CAS  Google Scholar 

  37. H. Fujimura, S. Tsuge, Y. Komizo, and T. Nishizawa: Tetsu-to-Hagané., 2001, vol. 87, pp. 707–12.

    Article  CAS  Google Scholar 

  38. V. Descotes, S. Migot, F. Robaut, J.P. Bellot, V. Perrin-Guerin, S. Witzke, and A. Jardy: Metall. Mater. Trans. A., 2015, vol. 46A, pp. 2793–5.

    Article  Google Scholar 

  39. X.H. Huang: Principles of Iron and Steel Metallurgy, Metallurgical Industry Press, Beijing, 2013.

    Google Scholar 

  40. M. Tanahashi, N. Furuta, T. Taniguchi, C. Yamauchi, and T. Fujisawa: ISIJ Int., 2003, vol. 43, pp. 7–13.

    Article  CAS  Google Scholar 

  41. H. Shibata, T. Tanaka, K. Kimura, and S.-Y. Kitamura: Ironmak. Steelmak., 2010, vol. 37, pp. 522–8.

    Article  CAS  Google Scholar 

  42. H. Shibata, K. Kimura, T. Tanaka, and S.-Y. Kitamura: ISIJ Int., 2011, vol. 51, pp. 1944–50.

    Article  CAS  Google Scholar 

  43. W. Choi, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2011, vol. 51, pp. 1951–6.

    Article  CAS  Google Scholar 

  44. X.L. Zhang, S.F. Yang, C.S. Liu, J.S. Li, Q. Liu, and G. Liu: J. Iron Steel Res. Int., 2018, vol. 25, pp. 1–8.

    Article  Google Scholar 

  45. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298–310.

    Article  CAS  Google Scholar 

  46. H. Ohta and S. Suito: ISIJ Int., 2003, vol. 43, pp. 1301–8.

    Article  CAS  Google Scholar 

  47. K. Suzuki, S. Ban-ya, and M. Hino: ISIJ Int., 2001, vol. 41, pp. 813–7.

    Article  CAS  Google Scholar 

  48. Y.B. Kang and H.G. Lee: ISIJ Int., 2010, vol. 50, pp. 501–8.

    Article  CAS  Google Scholar 

  49. H. Wada and R.D. Pehlk: Metall. Mater. Trans. B., 1977, vol. 8B, pp. 443–50.

    Article  CAS  Google Scholar 

  50. M. Heinz, K. Koch, and D. Janke: Steel Res., 1989, vol. 60, pp. 246–54.

    Article  CAS  Google Scholar 

  51. J.O. Jo, W.Y. Kim, C.O. Lee, and J.J. Pak: ISIJ Int., 2010, vol. 50, pp. 1373–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The current study was supported by the National Natural Science Foundation of China (Grant Nos. 52074198, 51774217 and 51604201).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengsong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 23, 2021; accepted November 9, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, W., Liu, C., Liao, K. et al. Transformation of Inclusions in 430 Stainless Steel During Heat Treatment at 1473 K (1200 °C). Metall Mater Trans B 53, 485–502 (2022). https://doi.org/10.1007/s11663-021-02385-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02385-2

Navigation