Skip to main content
Log in

Application of Thermodynamic Calculations to the Pyro-refining Process for Production of High Purity Bismuth

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present work has been performed with the aim to optimize the existing process for the production of high purity bismuth (99.999 pct). A thermo-chemical database including most of the probable impurities of bismuth (Bi-X, X = Ag, Au, Al, Ca, Cu, Fe, Mg, Mn, Na, Ni, Pb, S, Sb, Sn, Si, Te, Zn) has been constructed to perform different thermodynamic calculations required for the refining process. Thermodynamic description for eight of the selected binaries, Bi-Ca, Cu, Mn, Ni, Pb, S, Sb, and Sn, has been given in the current paper. Using the current database, different thermodynamic calculations have been performed to explain the steps involved in the bismuth refining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. [1] A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651-659.

    Article  Google Scholar 

  2. [2] P. Chartrand and A. D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1397-1407.

    Article  Google Scholar 

  3. [3] A. D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355-1360.

    Article  Google Scholar 

  4. [4] A. T. Dinsdale: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1991, vol. 15, pp. 317-425.

    Article  Google Scholar 

  5. [5] H. Kopp: Phil. Trans. R. Soc. Lond., 1865, vol. 155, pp. 71-202.

    Article  Google Scholar 

  6. [6] M. Hillert: J. Alloys Compd., 2001, vol. 320, pp. 161-176.

    Article  Google Scholar 

  7. [7] M. Hillert and M. Jarl: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1978, vol. 2, pp. 227-238.

    Article  Google Scholar 

  8. [8] S.-K. Seo, M. G. Cho and H. M. Lee: J. Electron. Mater., 2007, vol. 36, pp. 1536-1544.

    Article  Google Scholar 

  9. [9] A. D. Pelton, P. Chartrand. and G. Eriksson: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1409-1416.

    Article  Google Scholar 

  10. [10] L.-L. Jin, Y.-B. Kang, P. Chartrand and C. D. Fuerst: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2011, vol. 35, pp. 30-41.

    Article  Google Scholar 

  11. [11] Y.-B. Kang, A. D. Pelton, P. Chartrand and C. D. Fuerst: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2008, vol. 32, pp. 413-422.

    Article  Google Scholar 

  12. [12] M. Mezbahul-Islam and M. Medraj: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2009, vol. 33, pp. 478-486.

    Article  Google Scholar 

  13. [13] M. Mezbahul-Islam and M. Medraj: Mater. Chem. Phys., 2015, vol. 153, pp. 32-47.

    Article  Google Scholar 

  14. [14] P. Ghosh, M. Mezbahul-Islam and M. Medraj: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2012, vol. 36, pp. 28-43.

    Article  Google Scholar 

  15. [15] P. Chartrand and A. D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1361-1383.

    Google Scholar 

  16. [16] P. Chartrand and A. D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1385-1396.

    Article  Google Scholar 

  17. [17] L. Donski: Z. Anorg. Chem., 1908, vol. 57, p. 214.

    Article  Google Scholar 

  18. E. Kurzyniec: Bull. Intern. Acad. Polon. Sci. Lettr. Ser. A, 1931, pp. 31–58.

  19. W. Koster and F. Sautter: Z. Erzbergvau, Berg-und Metallhuttenw., 1952, vol. 5, p. 303.

  20. M.P. Smirnov and V.E. Rudnichenko: Russ. J. Inorg. Chem. (Engl. Transl.), 1963, vol. 8, p. 728.

  21. B. Predel: in Phase Equilibria: Crystallographic and Thermodynamic Data of Binary Alloys. vol. 5, ed, 1992, pp. 166–167.

  22. [22] M. Notin, J. Mejbar, A. Bouhajib, J. Charles and J. Hertz: J. Alloys Compd., 1995, vol. 220, pp. 62-75.

    Article  Google Scholar 

  23. H. Okamoto: in Binary Phase Diagram, 2nd ed., , T. Massalski, Ed., ASM International, 1990, p. 720.

  24. [24] H. Kim, D. A. Boysen, D. J. Bradwell, B. Chung, K. Jiang, A. A. Tomaszowska, K. Wang, W. Wei, and D. R. Sadoway: Electrochim. Acta, 2012, vol. 60, pp. 154-162.

    Article  Google Scholar 

  25. J. Delcet, A. Delgado-Brune and J. J. Egan: in AIME, Fall Meet, 1979, p. 275.

  26. [26] C. T. Heycock and F. H. Neville: J. Chem. Soc., Trans., 1892, vol. 61, pp. 888-914.

    Article  Google Scholar 

  27. [27] M. W. Nathans and M. Leider: J. Phys. Chem., 1962, vol. 66, pp. 2012-2015.

    Article  Google Scholar 

  28. [28] W. Oelsen, E. Schurmann and D. Buchholtz: Arch. Eisenhuettenwes., 1961, vol. 32, pp. 39-46.

    Google Scholar 

  29. [29] O. J. Kleppa: J. Am. Chem. Soc., 1952, vol. 74, pp. 6047-6051.

    Article  Google Scholar 

  30. [30] K. Jeriomin: Z. Anorg. Chem., 1908, vol. 55, pp. 412-414.

    Article  Google Scholar 

  31. [31] D. J. Chakrabarti and D. E. Laughlin: Bull. Alloy Phase Diagr., 1984, vol. 5, pp. 148-155.

    Article  Google Scholar 

  32. [32] M. Gomez, L. Martin-Garin, H. Ebert, P. Bedon and P. Desre: Z. Metallkd., 1976, vol. 67, pp. 131-134.

    Google Scholar 

  33. [33] J. Niemelä, G. Effenberg, K. Hack and P. J. Spencer: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1986, vol. 10, pp. 77-89.

    Article  Google Scholar 

  34. [34] O. Teppo, J. Niemelä and P. Taskinen: Thermochim. Acta, 1990, vol. 173, pp. 137-150.

    Article  Google Scholar 

  35. [35] A. Takeuchi and A. Inoue: Intermetallics, 2010, vol. 18, pp. 1779-1789.

    Article  Google Scholar 

  36. [36] A. V. Nikol’skaya, A. L. Lomov and Y. I. Gerasimov: Zh. Fiz. Khim., 1959, vol. 33, pp. 1134-1139.

    Google Scholar 

  37. M. Kawakami: Scientific Reports of Reserch Institute Tohoku University, 1930, vol. 19, pp. 521–49.

  38. [38] H. Flandorfer, A. Sabbar, C. Luef, M. Rechchach and H. Ipser: Thermochim. Acta, 2008, vol. 472, pp. 1-10.

    Article  Google Scholar 

  39. [39] P. Taskinen and J. Niemela: Scand. J. Metall., 1981, vol. 10, pp. 195-200.

    Google Scholar 

  40. [40] B. Predel and A. Emam: Z. Metallkd., 1973, vol. 64, pp. 496-501.

    Google Scholar 

  41. [41] A. U. Seybolt, H. Hansen, B. W. Roberts and P. Yuricisin: Trans AIME, 1956, vol. 206, p. 606.

    Google Scholar 

  42. [42] R. G. Pirich, G. Busch, W. Poit and D. Larson: J. Metall. Trans. A, 1980, vol. 11A, pp. 193-194.

    Article  Google Scholar 

  43. [43] E. Wachtel and R. Damm: Z. Metallkd., 1963, vol. 54, pp. 693-694.

    Google Scholar 

  44. [44] P. Siebe: Z. Anorg. Allg. Chem., 1919, vol. 108, pp. 161-171.

    Article  Google Scholar 

  45. [45] K. Oikawa, Y. Mitsui, K. Koyama and K. Anzai: Mater. Trans., 2011, vol. 52, pp. 2032-2039.

    Article  Google Scholar 

  46. I. Katayama, S. Matsushima, and Z. Kozuka: Mater. Trans., JIM, 1990, vol. 31, pp. 789–92.

  47. [47] A. Portevin: Rev. metal., 1908, vol. 5, p. 110.

    Google Scholar 

  48. [48] P. Nash: Bull. Alloy Phase Diagrams, 1985, vol. 6, pp. 345-347.

    Article  Google Scholar 

  49. [49] G. P. Vassilev, X. J. Liu and K. Ishida: J. Phase Equilib. Diffus., 2005, vol. 26, pp. 161-168.

    Article  Google Scholar 

  50. [50] G. Voss: Z. Anorg. Chem., 1908, vol. 57, pp. 34-71.

    Article  Google Scholar 

  51. [51] P. Feschotte and J. M. Rosset: J. Less-Common Met., 1988, vol. 143, pp. 31-37.

    Article  Google Scholar 

  52. [52] G. Vassilev, V. Gandova and P. Docheva: Cryst. Res. Technol., 2009, vol. 44, pp. 25-30.

    Article  Google Scholar 

  53. [53] J. Wang, F. G. Meng, L. B. Liu and Z. P. Jin: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 139-145.

    Article  Google Scholar 

  54. [54] G. P. Vassilev, K. I. Lilova and J. C. Gachon: J. Alloys Compd., 2009, vol. 469, pp. 264-269.

    Article  Google Scholar 

  55. [55] M. Iwase and A. McLean: Metall. Mater. Trans. B, 1983, vol. 14, pp. 765-767.

    Article  Google Scholar 

  56. [56] G. P. Vassilev, J. Romanowska and G. Wnuk: Int. J. Mater. Res., 2007, vol. 98, pp. 468-475.

    Article  Google Scholar 

  57. [57] M. V. Nosek, G. V. Yang-Sho-Syan and N. M. Sernibratora: Trudy Inst. Khim. Akad. Nauk Kaz SSR, 1967, vol. 15, pp. 150-157.

    Google Scholar 

  58. [58] N. A. Gokcen: J. Phase Equilib., 1992, vol. 13, pp. 21-32.

    Article  Google Scholar 

  59. [59] M. Hayasi: J. Jpn. Inst. Met., 1939, vol. 3, pp. 123-125.

    Article  Google Scholar 

  60. [60] T. Takase: J. Jpn. Inst. Met., 1937, vol. 1, pp. 143-150.

    Article  Google Scholar 

  61. [61] B. Predel and W. Schwermarm: Z. Metallkd., 1967, vol. 58, pp. 553-557.

    Google Scholar 

  62. A. Wojtaszek: Zeszyty Nauk. Uni. Jagiellonskiego, Ser. Nauk. Mat. Przyrod. Mat. Fiz Chem. (Polish), 1956, vol. 6, pp. 151–61.

  63. [63] Y. Mitani: Rep. Osaka Pref. Ind. Res. Inst., 1951, vol. 3, pp. 36-38.

    Google Scholar 

  64. [64] H. Fon and H. Hanemann: Z. Metallkd., 1940, vol. 32, pp. 112-117.

    Google Scholar 

  65. [65] H. S. Strickler and H. Seltz: J. Am. Chem. Soc., 1936, vol. 58, pp. 2084-2093.

    Article  Google Scholar 

  66. [66] W. Oelsen and R. Bermewitz: Arch. Eisenhiittenwes., 1958, vol. 29, pp. 663-671.

    Google Scholar 

  67. [67] H. Okamoto: J. Phase Equilib. Diffus., 2012, vol. 33, p. 505.

    Article  Google Scholar 

  68. [68] M. Azzaoui and J. Hertz: Z. Metallkd., 1995, vol. 86, pp. 776-783.

    Google Scholar 

  69. [69] W. A. Badawi, M. E. El-Talbi and A. M. Qun: Bull. Chem. Soc. Jpn., 1990, vol. 63, pp. 1795-1780.

    Article  Google Scholar 

  70. [70] Z. Moser: Z. Metallkd., 1973, vol. 64, pp. 40-46.

    Google Scholar 

  71. [71] P. Roy, R. L. Orr and R. Hultgren: J. Phys. Chem., 1960, vol. 64, pp. 1034-1037.

    Article  Google Scholar 

  72. [72] U. Gonser: Z. Phys. Chem., 1954, vol. 181, p. 1.

    Article  Google Scholar 

  73. [73] K. Niwa, M. Shimoji and O. Mikumi: J. Jpn. Inst. Met., 1960, vol. 24, pp. 668-672.

    Google Scholar 

  74. [74] R. J. Fruehan: Metall. Trans., 1971, vol. 2, pp. 1213-1218.

    Article  Google Scholar 

  75. P. Moldovan: Bull. Inst. Politeh. “Gheorghe Gheorghiu-Dej” Bucuresti, Ser. Chim. Metal (Romanian), 1977, vol. 39, pp. 107–12.

  76. [76] S. W. Yoon and H. M. Lee: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1998, vol. 22, pp. 167-178.

    Article  Google Scholar 

  77. [77] D. Boa and I. Ansara: Thermochim. Acta, 1998, vol. 314, pp. 79-86.

    Article  Google Scholar 

  78. [78] D. D. Cubicciotti: J. Phys. Chem., 1962, vol. 66, pp. 1205-1206.

    Article  Google Scholar 

  79. [79] A. H. W. Aten: Z. Anorg. Allg. Chem., 1905, vol. 47, pp. 386-398.

    Article  Google Scholar 

  80. [80] H. Pelabon: Ann. Chim. Phys., 1909, vol. 17, pp. 526-566.

    Google Scholar 

  81. [81] J. V. Happ and T. R. A. Davey: Trans. Inst. Min. Met. C, 1971, vol. 80, pp. 190-191.

    Google Scholar 

  82. [82] K. Okajima and H. Sakao: Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 400-401.

    Article  Google Scholar 

  83. [83] N. Fukatsu, H. Mukai and Z. Kozuka: J. Jpn. Inst. Met., 1980, vol. 44, pp. 412-412.

    Google Scholar 

  84. [84] J. C. Lin, R. C. Sharma and Y. A. Chang: J. Phase Equilib., 1996, vol. 17, pp. 132-139.

    Article  Google Scholar 

  85. [85] S. Huang, Y. Liu, Y. Chen and Z. Kang: J. Electron. Mater., 2014, vol. 43, pp. 1237-1243.

    Article  Google Scholar 

  86. [86] D. D. Cubicciotti: J. Phys. Chem., 1963, vol. 67, pp. 118-123.

    Article  Google Scholar 

  87. [87] C. A. Trythall and L. G. Twidwell: J. Chem. Thermodyn., 1975, vol. 7, pp. 1099-1105.

    Article  Google Scholar 

  88. [88] H. Ohtani and K. Ishida: J. Electron. Mater., 1994, vol. 23, pp. 747-755.

    Article  Google Scholar 

  89. [89] W. Oelsen and K. F. Golucke: Arch. Eisenhüttenw., 1958, vol. 29, pp. 689-698.

    Article  Google Scholar 

  90. [90] S. Nagasaki and E. Fujita: J. Japan Inst. Met., 1952, vol. 16, p. 317.

    Google Scholar 

  91. [91] M. H. Braga, J. Vizdal, A. Kroupa, J. Ferreira, D. Soares and L. F. Malheiros: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2007, vol. 31, pp. 468-478.

    Article  Google Scholar 

  92. [92] N. Asryan and A. Mikula: Z. Metallkd., 2004, vol. 95, p. 132.

    Article  Google Scholar 

  93. [93] R. L. Sharkey and M. J. Pool: Metall. Trans., 1972, vol. 3, p. 1773.

    Article  Google Scholar 

  94. [94] D. Malakhov, X. Liu, I. Ohnuma and K. Ishida: J. Phase Equilib., 2000, vol. 21, pp. 514-520.

    Article  Google Scholar 

  95. [95] D. Manasijević, J. Vřešťál, D. Minić, A. Kroupa, D. Živković and Ž. Živković: J. Alloys Compd., 2007, vol. 438, pp. 150-157.

    Article  Google Scholar 

  96. [96] J. Vizdal, M. H. Braga, A. Kroupa, K. W. Richter, D. Soares, L. F. Malheiros, and J. Ferreira: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2007, vol. 31, pp. 438-448.

    Article  Google Scholar 

  97. [97] H. Okamoto: J. Phase Equilib. Diffus., 2010, vol. 31, p. 205.

    Article  Google Scholar 

  98. [98] M. G. Charpy: Bull. Soc. Encourag. Ind. Natl., 1897, vol. 2, pp. 384-419.

    Google Scholar 

  99. [99] N. Parravano and E. Viviani: Gazz. Chim. ital., 1910, vol. 40, pp. 445-475.

    Google Scholar 

  100. E. G. Bowen and W. M. Jones: Phil, Mag., 1932, vol. 13, pp. 1029–32.

  101. [101] T. H. Weber and K. Cruse: Fresenius’ Z., 1959, vol. 166, pp. 333-356.

    Article  Google Scholar 

  102. W. M. Yim and J. P. Dismukes: Crystal Growth. vol. , H. S. Peiser, Ed., Pergamon Press Ltd, Oxford, 1967, pp. 187–96.

  103. [103] M. CooK: J. Inst. Met., 1922, vol. 28, pp. 421-445.

    Google Scholar 

  104. [104] D. A. Petrov: Dokl. Akad. Nauk SSSR, 1985, vol. 283, pp. 1428-1431.

    Google Scholar 

  105. [105] V. N. Vigdorovich, G. A. Ukhlinov and N. Y. Dolinskaya: Zavod. Lab, 1973, vol. 39, pp. 172-174.

    Google Scholar 

  106. [106] F. E. Wittig and E. Gehring: Naturwiss., 1959, vol. 46, p. 200.

    Article  Google Scholar 

  107. [107] A. Yazawa, T. Kawasbima and K. Itagaki: Nipp. Kinz. Gakk., 1968, vol. 32, pp. 1288-1293.

    Google Scholar 

  108. [108] M. Kawakami: Sc. Rep. Tohoku Imp. Univ. Sendai., 1930, vol. 19, pp. 521-549.

    Google Scholar 

  109. [109] A. A. Vecher: Russ. J. Phys. Chem., 1983, vol. 57, pp. 528-530.

    Google Scholar 

  110. [110] Y. Feutelais, G. Morgant, J. R. Didry and J. Schnitter: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1992, vol. 16, pp. 111-119.

    Article  Google Scholar 

  111. [111] A. Pelton and C. Bale: Metall. Trans. A, 1986, vol. 17, pp. 1057-1063.

    Article  Google Scholar 

  112. [112] J. Liu, C. Guo, C. Li and Z. Du: Thermochim. Acta, 2012, vol. 539, pp. 44-50.

    Article  Google Scholar 

  113. [113] T. R. A. Davey and B. Bied-Charreton: JOM, 1983, vol. 35, pp. 37-41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mezbahul-Islam.

Additional information

Manuscript submitted December 31, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezbahul-Islam, M., Belanger, F., Chartrand, P. et al. Application of Thermodynamic Calculations to the Pyro-refining Process for Production of High Purity Bismuth. Metall Mater Trans B 48, 73–90 (2017). https://doi.org/10.1007/s11663-016-0673-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0673-2

Keywords

Navigation