Skip to main content
Log in

Effect of SiO2 on the Crystal Structure Stability of SFC at 1473 K (1200 °C)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Silico-ferrite of calcium (SFC) is a key intermediate phase in the sintering process of fine iron ores, and SiO2 plays an important role in the formation of SFC. In this work, the crystal structure stability of SFC synthesized at 1473 K (1200 °C) has been determined by X-ray diffraction, field-emission scanning electron microscopy, and X-ray absorption spectra. Synthesis of SFC was carried out under air at 1473 K (1200 °C) by mixing different amounts of SiO2 with Fe2O3 and CaCO3. The results show that the maximum solid solubility of SiO2 in the crystal structure of SFC does not exceed 6.11 wt pct at 1473 K (1200 °C); under these conditions, Fe2O3 begins to appear. The process of Si solution is closely related to the presence of a Ca channel composed of Ca octahedron in the crystal structure of SFC based on the results from the measurements of Ca K-edge X-ray absorption spectra. Si mainly occupies the center positions of the upper and lower tetrahedron adjacent to Ca channel. The length of Ca-Ca bond in Ca channel increases with the increasing of Si content. The crystal structure stability of SFC may be related to the structure of the Ca channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Ikeda, K. Inoue, T. Uenaka, and M. Kanemoto: Tetsu-to-Hagané, 1981, vol. 67, pp. 726–35.

    Google Scholar 

  2. K. Inoue and T. Ikeda: Tetsu-to-Hagané, 1982, vol. 68, pp. 2190–99.

    Google Scholar 

  3. J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, and M.A. Montague: Neues Jahrb. Miner. Abh., 1989, vol. 161, pp. 1–26.

    Google Scholar 

  4. M.I. Pownceby, J.M.F. Clout, and M.J. Fisher-White: Trans. Inst. Min. Metall. (Sect. C), 1998, vol. 107, pp. C1–10.

  5. M.I. Pownceby and T.R.C. Patrick: Eur. J. Mineral., 2000, vol. 12, pp. 455–68.

    Article  Google Scholar 

  6. M.I. Pownceby and J.M.F. Clout: Trans. Inst. Min. Metall. (Sect. C), 2000, vol. 109, pp. C36–48.

  7. T.R.C. Patrick and M.I. Pownceby: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 79–89.

    Article  Google Scholar 

  8. N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, and A.N. Christensen: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 929–36.

    Article  Google Scholar 

  9. N.V.Y. Scarlett, I.C. Madsen, M.I. Pownceby, and A.N. Christensen: J. Appl. Crystallogr., 2004, vol. 37, pp. 362–68.

    Article  Google Scholar 

  10. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1344–57.

    Article  Google Scholar 

  11. N.A.S. Webster, M.I. Pownceby and I.C. Madsen: ISIJ International, 2013, vol. 53(8), pp. 1334–40.

    Article  Google Scholar 

  12. D.H. Lister and F.P. Glasser: Brit. Ceram. Trans. J., 1967, vol. 66, pp. 293–305.

    Google Scholar 

  13. W.G. Mumme: Neues Jahrb. Miner. Abh., 2003, vol. 178, pp. 307–35.

    Article  Google Scholar 

  14. X. Ding and X.-M. Guo: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1221–31.

    Article  Google Scholar 

  15. B. Ravel and M. Newville: J. Synchrotron Rad., 2005, vol. 12, pp. 537–41.

    Article  Google Scholar 

  16. L.-W. Du, S. Bian, B.-D. Gou, Y. Jiang, J. Huang, Y.-X. Gao, Y.-D. Zhao, W. Wen, T.-L. Zhang, and K. Wang: Crystal Growth & Design, 2013, vol. 13(7), pp. 3103–9.

    Article  Google Scholar 

  17. K. Asokan, J.C. Jan, J.W. Chiou, W.F. Pong, M.-H. Tsai, Y.K. Chang, Y.Y. Chen, H.H. Hsieh, H.-J. Lin, Y.W. Yang, L.J. Lai, and I.N. Lin: Journal of Solid State Chemistry, 2004, vol. 177, pp. 2639–43.

    Article  Google Scholar 

  18. D.R. Neuville, L. Cormier, A.-M. Flank, V. Briois, and D. Massiot: Chemical Geology, 2004, vol. 213, pp. 153–63.

    Article  Google Scholar 

  19. O Haas, Chr Ludwig, U Bergmann, RN Singh, A Braun, T Graule (2011) Journal of Solid State Chemistry. 184, 3163-71.

    Article  Google Scholar 

  20. I. Tanaka and T. Mizoguchi: J. Phys.: Condens. Matter, 2009, vol. 21, pp. 1–9.

    Google Scholar 

  21. A. Bianconi: XANES spectroscopy, 1988, pp. 573–662.

    Google Scholar 

  22. D. Eichert, M. Salome, M. Banu, J. Susini, and C. Rey: Spectrochim. Acta B: Atom. Spectrosc, 2005, vol. 60, pp. 850–8.

    Article  Google Scholar 

  23. E. Paris and T.A. Tyson: Phys. Chem. Minerals, 1994, vol. 21, pp. 299–308.

    Google Scholar 

  24. B. Gilbert, B.H. Frazer, A. Belz, P.G. Conrad, K.H. Nealson, D. Haskel, J.C. Lang, G. Srajer, and G.D. Stasio: J. Phys. Chem. A, 2003, vol. 107, pp. 2839–47.

    Article  Google Scholar 

  25. K. Brandenburg: DIAMOND, Crystal Impact GbR, Bonn, Germany, 1999.

    Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China for providing the financial support (Grants U146020005 and 51374017).

The XANES beam time was granted by 4B7A end-station of Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Chinese Academy of Sciences. The staff members of 4B7A are acknowledged for their support in undertaking these measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Min Guo.

Additional information

Manuscript submitted August 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Guo, XM., Ma, CY. et al. Effect of SiO2 on the Crystal Structure Stability of SFC at 1473 K (1200 °C). Metall Mater Trans B 46, 1146–1153 (2015). https://doi.org/10.1007/s11663-015-0313-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0313-2

Keywords

Navigation