Skip to main content
Log in

Silico-ferrite of Calcium and Aluminum (SFCA) Iron Ore Sinter Bonding Phases: New Insights into Their Formation During Heating and Cooling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The formation of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter phases during heating and cooling of synthetic iron ore sinter mixtures in the range 298 K to 1623 K (25 °C to 1350 °C) and at oxygen partial pressure of 5 × 10−3 atm has been characterized using in situ synchrotron X-ray diffraction. SFCA and SFCA-I are the key bonding phases in iron ore sinter, and an improved understanding of their formation mechanisms may lead to improved efficiency of industrial sintering processes. During heating, SFCA-I formation at 1327 K to 1392 K (1054 °C to 1119 °C) (depending on composition) was associated with the reaction of Fe2O3, 2CaO·Fe2O3, and SiO2. SFCA formation (1380 K to 1437 K [1107 °C to 1164 °C]) was associated with the reaction of CaO·Fe2O3, SiO2, and a phase with average composition 49.60, 9.09, 0.14, 7.93, and 32.15 wt pct Fe, Ca, Si, Al, and O, respectively. Increasing Al2O3 concentration in the starting sinter mixture increased the temperature range over which SFCA-I was stable before the formation of SFCA, and it stabilized SFCA to a higher temperature before it melted to form a Fe3O4 + melt phase assemblage (1486 K to 1581 K [1213 °C to 1308 °C]). During cooling, the first phase to crystallize from the melt (1452 K to 1561 K [1179 °C to 1288 °C]) was an Fe-rich phase, similar in composition to SFCA-I, and it had an average composition 58.88, 6.89, 0.82, 3.00, and 31.68 wt pct Fe, Ca, Si, Al, and O, respectively. At lower temperatures (1418 K to 1543 K [1145 °C to 1270 °C]), this phase reacted with melt to form SFCA. Increasing Al2O3 increased the temperature at which crystallization of the Fe-rich phase occurred, increased the temperature at which crystallization of SFCA occurred, and suppressed the formation of Fe2O3 (1358 K to 1418 K [1085 °C to 1145 °C]) to lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.R. Dawson, J. Ostwald, and K.M. Hayes: T. I. Min. Metall. C, 1985, vol. 94, pp. 71–8.

    CAS  Google Scholar 

  2. L-H. Hsieh and J.A. Whiteman: ISIJ Int., 1989, vol. 29, pp. 24–32.

    Article  CAS  Google Scholar 

  3. L.-H. Hsieh and J.A. Whiteman: ISIJ Int., 1989, vol. 29, pp. 625–34.

    Article  CAS  Google Scholar 

  4. T.R.C. Patrick and R.R. Lovel: ISIJ Int., 2001, vol. 41, pp. 128–35.

    Article  CAS  Google Scholar 

  5. T. Mukherjee and J.A. Whiteman: Ironmaking Steelmaking, 1985, vol. 12, pp. 151–55.

    CAS  Google Scholar 

  6. J. Ostwald: BHP Tech. Bull., 1981, vol. 25, pp. 13–20.

    CAS  Google Scholar 

  7. N.J. Bristow and A.G. Waters: T. I. Min. Metall. C, 1991, vol. 100, pp. 1–10.

    CAS  Google Scholar 

  8. I. Shigaki, M. Sawada, and N. Gennai: T. Iron Steel I. Japan, 1986, vol. 26, pp. 503–11.

    Article  CAS  Google Scholar 

  9. C.E. Loo, K.T. Wan, and V.R. Howes: Ironmaking Steelmaking, 1988, vol. 15, pp. 279–85.

    Google Scholar 

  10. C. Chen, L. Zhang, L. Lu, and S. Sun: ISIJ Int., 2010, vol. 50, pp. 1532–1.

    Article  Google Scholar 

  11. J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, and M.A. Montague: Neues Jahrb. Miner. Abh., 1989, vol. 161, pp. 1–26.

    CAS  Google Scholar 

  12. J. Hancart, V. Leroy, and A. Bragard: C.N.R.M. Report, 1967, DS 24/67, pp. 3–7.

  13. S.N. Ashan, T. Mukkerjee, and J.A. Whiteman: Ironmaking Steelmaking, 2003, vol. 10, pp. 54–64.

    Google Scholar 

  14. T.R.C. Patrick and M.I. Pownceby: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1–11.

    Google Scholar 

  15. W.G. Mumme, J.M.F. Clout, and R.W. Gable: Neues Jahrb. Miner. Abh., 1998, vol. 173, pp. 93–117.

    CAS  Google Scholar 

  16. J. McAndrew and J.M.F. Clout: Proc. of the 4th China-Australia Symposium on the Technology of Feed Preparation for Ironmaking, 1993, Dampier, Australia, pp. 1–15.

  17. W.G. Mumme: Neues Jahrb. Miner. Abh., 2003, vol. 178, pp. 307–35.

    Article  CAS  Google Scholar 

  18. D.H. Lister and F.P. Glasser: Brit. Ceram. Trans. J., 1967, vol. 66, pp. 293–305.

    CAS  Google Scholar 

  19. T. van den Berg and J.P.R. de Villiers: Ninth International Congress for Applied Mineralogy, Brisbane, QLD, September 8–10, 2008, pp. 713–17.

  20. T. van den Berg and J.P.R. de Villiers: T. I. Min. Metall. C, 2009, vol. 118, pp. 214–21.

  21. J.P.R. de Villiers and S.M.C. Verryn: Ninth International Congress for Applied Mineralogy, Brisbane, QLD, September 8–10, 2008, pp. 265–75.

  22. Y. Hida, M. Sasaki, K. Sato, M. Kagawa, T. Miyazaki, H. Soma, H. Naito, and M. Taniguchi: Nippon Steel Tech. Report, 1987, vol. 35, pp. 59–67.

    Google Scholar 

  23. Y. Hida, J. Okazaki, K. Itoh, and M. Sasaki: Tetsu-To-Hagané, 1987, vol. 73, pp. 1893–900.

    CAS  Google Scholar 

  24. M. Sasaki and Y. Hida: Tetsu-To-Hagane, 1982, vol. 68, pp. 563–71.

    CAS  Google Scholar 

  25. E.M. Levin, C.R. Robbins, and H.F. McMurdie: Phase Diagrams for Ceramists, 2nd ed., The American Ceramic Society Inc., Columbus, OH, 1969, p. 228.

  26. F. Matsuno: T. Iron Steel I. Japan, 1979, vol. 19, pp. 595–604.

    CAS  Google Scholar 

  27. F. Matsuno and T. Harada: T. Iron Steel I. Japan, 1981, vol. 21, pp. 318–25.

    Article  Google Scholar 

  28. M.I. Pownceby and J.M.F. Clout: T. I. Min. Metall. C, 2000, vol. 109, pp. 36–48.

    Google Scholar 

  29. N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, and A. Christensen: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 929–36.

    Article  CAS  Google Scholar 

  30. N.V.Y. Scarlett, I.C. Madsen, M.I. Pownceby, and A. Christensen: J. Appl. Crystallogr., 2004, vol. 37, pp. 362–68.

    Article  CAS  Google Scholar 

  31. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, N.V.Y. Scarlett, L. Lu, and J.R. Manuel: Australas. I. Min. Met., 2011, no. 6, pp. 537–43.

  32. K. Wallwork, B. Kennedy, and D. Wang: AIP Conf. Proc., 2007, vol. 879, pp. 879–82.

    Article  CAS  Google Scholar 

  33. B. Schmitt, C. Brönnimann, E.F. Eikenberry, F. Gozzo, C. Hörmann, R. Horisberger, and B. Patterson: Nucl. Instrum. Methods A, 2003, vol. 501, pp. 267–72.

    Article  CAS  Google Scholar 

  34. M.R. Rowles: Powder Diff., 2010, vol. 25, pp. 297–301.

    Article  CAS  Google Scholar 

  35. H.M. Rietveld: J. Appl. Crystallogr., 1967, vol. 2, pp. 65–71.

    Article  Google Scholar 

  36. R.B. Von Dreele: Powder Diffraction: Theory and Practice, R.E. Dinnebier and S.J.L. Billinge, eds., Royal Society of Chemistry, Cambridge, U.K., 2008, pp. 266–81.

  37. Bruker: 2009, TOPAS Version 4.2, Bruker AXS Inc., Madison, WI.

  38. D. Taylor: Brit. Ceram. Trans. J., 1984, vol. 83, pp. 92–98.

    CAS  Google Scholar 

  39. B.K. Gan, I.C. Madsen, and J.G. Hockridge: J. Appl. Crystallogr., 2009, vol. 42, pp. 697–705.

    Article  CAS  Google Scholar 

  40. K. Kihara: Eur. J. Mineral., 1990, vol. 2, pp. 63–77.

    CAS  Google Scholar 

  41. S.A. Markgraf and R.J. Reeder, Am. Mineral., 1985, vol. 70, pp. 590–600.

  42. R. Blake, R. Hessevick, T. Zoltai, and L. Finger: Am. Mineral., 1966, vol. 51, pp. 123–29.

    CAS  Google Scholar 

  43. H. Schulz and V. Tscherry: Acta Crystallogr. B Struct., 1972, vol. 28, pp. 2168–73.

    Article  CAS  Google Scholar 

  44. I. Oftedal: Z. Phys. Chem., 1927, vol. 128, pp. 135–58.

    CAS  Google Scholar 

  45. P. Berastegui, S.-G. Eriksson, and S. Hull: Mater. Res. Bull., 1999, vol. 34, pp. 303–14.

    Article  CAS  Google Scholar 

  46. B.F. Decker and J.S. Kasper: Acta Crystallogr., 1957, vol. 10, pp. 332–37.

    Article  CAS  Google Scholar 

  47. R.R. Dayal and F.P. Glasser: Sci. Ceram., 1967, vol. 3, pp. 191–214.

    Google Scholar 

  48. J.S. Huebner: Research Techniques for High Temperature and High Pressure, G.C. Ulmer, ed., Springer, New York, NY, 1971, pp. 123–77.

  49. G.J. Redhammer, G. Tippelt, G. Roth, and G. Amthauer: Am. Mineral., 2004, vol. 89, pp. 405–20.

    CAS  Google Scholar 

  50. M.I. Pownceby and J.M.F. Clout: T. I. Min. Metall. C, 2003, vol. 112, pp. 44–51.

    Google Scholar 

  51. E.J. Bagnall: Proc. 2nd Int. Symp. Agglomeration, 1977, Atlanta, GA, pp. 587–603.

  52. P.R. Dawson, J. Ostwald, and K.M. Hayes: Proc. Australas. Inst. Min. Metall., 1984, no. 289, pp. 163–69.

  53. M.S. Model, T.Y. Malysheva, V.Y. Lyadova, N.V. Chugunova, E.V. Vlasova, and G.K. Astakhova: Russ. Metall., 1987, vol. 2, pp. 1–7.

    Google Scholar 

  54. C.E. Loo, R.P. Williams, and L.T. Matthews: T. I. Min. Metall. C, 1992, vol. 101, pp. 7–16.

    Google Scholar 

  55. E. Da Costa, J.P. Coheur, B. Vanderheyden, and R. Munnix: ISIJ Int., 1995, vol. 35, pp. 138–47.

  56. R.D. Shannon: Acta Crystallogr. A Crys., 1976, vol. 32, pp. 751–67.

    Article  Google Scholar 

  57. A.R. West: Basic Solid State Chemistry, 2nd ed., Wiley, Chichester, U.K., 1999, p. 108.

Download references

Acknowledgments

The Australian Nuclear Science and Technology Organization (ANSTO) are acknowledged for their financial support of this research. This research was partially undertaken on the powder diffraction beamline (10BM1) at the Australian Synchrotron, Victoria, Australia, under beamtime awards AS093/PD1639 and AS113/PD4160. The authors wish to thank: James Manuel, Liming Liu, Nicola Scarlett, Mark Styles, Jean-Pierre Veder, Caroline Johnson, Barry Halstead, and Helen Brand (all CSIRO Process Science and Engineering), Kia Wallwork (Australian Synchrotron) for assistance with synchrotron data collection; Matthew Glenn and Aaron Torpy (CSIRO Process Science and Engineering) for assistance with scanning electron microscopy; and Nick Wilson and Colin McRae (CSIRO Process Science and Engineering) for assistance with electron microprobe analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan A. S. Webster.

Additional information

Manuscript submitted June 12, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, N.A.S., Pownceby, M.I., Madsen, I.C. et al. Silico-ferrite of Calcium and Aluminum (SFCA) Iron Ore Sinter Bonding Phases: New Insights into Their Formation During Heating and Cooling. Metall Mater Trans B 43, 1344–1357 (2012). https://doi.org/10.1007/s11663-012-9740-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9740-5

Keywords

Navigation