Skip to main content
Log in

Dissolution Rate and Diffusivity of Silica in SiMn Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dissolution rate and solubility of quartz in silicomanganese slag were studied in the temperature range of 1673 K to 1823 K (1400 °C to 1550 °C) under an inert atmosphere of argon. The dissolution rate of quartz was measured using a rotating rod technique; while quartz solubility was examined using static experiments. Solubility of silica in slags was also calculated using multi-phase equilibrium thermodynamic software developed by CSIRO. Effects of additives (CaO, MnO, SiO2, and Al2O3) on the quartz dissolution rate and solubility were also examined. Under the experimental conditions employed the dissolution rate of quartz was controlled by mass transfer of silica in the slag. Silica diffusion coefficients in silicomanganese slag varied from 0.9 × 10−7 to 1.3 × 10−6 cm2/s, depending on temperature and slag composition. Activation energy for the diffusion of silica in silicomanganese slag was found equal to 367 kJ/mol. The addition of 10 wt pct CaO decreased activation energy to 115 kJ/mol, while addition of 10 wt pct Al2O3 increased the activation energy to 430 kJ/mol. Effect of slag composition on silica diffusivity was examined in relation with structure of molten slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The slag viscosity model in the MPE is structurally related; it was validated against published experimental data for simple and complex muli-component slag systems containing oxide components of SiO2, Al2O3, Fe2O3, CaO, MgO, MnO, FeO, PbO, NiO, Cu2O, ZnO, CoO, and TiO2. The model was also validated against measurements of viscosity of a range of complex industrial slags including ironmaking slags formed in blast furnace and new direct smelting processes, slags for base metal and PGM smelting, as well as for coal ash slags produced by gasifies.[12] In most cases, the agreement between the measured and calculated viscosity of slags was very good and well within the uncertainties of experimental data (±30 pct).

References

  1. Ostrovski O, Swinbourne D. (2013) Steel Res. Int., 84(7), 680-686.

    Article  Google Scholar 

  2. M.D. Dolan and R.F. Johnstone. Metall. Mater. Trans. B., 2004, 35B, 675–684.

    Article  Google Scholar 

  3. Liang Y, Richter FM, Davis AM, Watson EB. (1996) Geochim. Cosmochin. Ac., 60(22), 4353-4367.

    Article  Google Scholar 

  4. Feichitinger S, Michelic SK, Kang Y, Bernhard C (2014) J. Am. Ceram. Soc., 97(1), 316-325.

    Article  Google Scholar 

  5. Keller H, Schwerdtfeger K. (1979) Metall. Trans. B., 10B, 551-554.

    Article  Google Scholar 

  6. Mellberg PO, Lundstrom PA. (1981) Transactions ISIJ., 21, 592-595.

    Article  Google Scholar 

  7. J.O’.M Bockris, J.D. Mackenzie, J.A. Kitchener: Trans. Farad. Soc., 1954, 51, 1734–47.

  8. J.O.’M. Bockris and A.K.N. Reddy: Modern Electrochemistry, Plenum Press, New York, 1970.

  9. 9.G.H. Zhang, K.C. Chou, Q.G. Xue, and K. Milla: Metall. Mater. Trans. B., 2012, 43B, 64–72.

    Article  Google Scholar 

  10. 10.G.H. Zhang, K.C. Chou and K. Milla: ISIJ Int., 2012, 52(3), 355–362.

    Article  Google Scholar 

  11. Mills K (1993) ISIJ International, 33(1), 148-155.

    Article  Google Scholar 

  12. 12.L. Zhang, S. Jahanshahi, S. Sun, C. Chen, B. Bourke, S. Wright and M.A. Somerville: JOM, 2002, 54(11), 51–56.

    Article  Google Scholar 

  13. Amini SH, Brungs MP, Jahanshahi S, Ostrovski O (2006) Metall. Mater. Trans. B., 37B, 773-780.

    Article  Google Scholar 

  14. Cochran WL. (1934) Proceedings of the Cambridge Philosophical Society, 30, 365-374.

    Article  Google Scholar 

  15. 15.M. Kosaka and S. Minowa: Tetsu To Hagane, 1966, 52(12), 22–36.

    Google Scholar 

  16. Mills KC, Keene B.(1987) J. International Materials reviews, 32(1-2), 1-120.

    Article  Google Scholar 

  17. Levich VG. (1962) Physiochemical Hydrodynamics, Prentice-Hall, New York, NY, 69.

    Google Scholar 

  18. Eisenberg CW, Tobias W (1995) Chemical Engineering Progress Symp. Series, 51, 25-29.

    Google Scholar 

  19. Slag Atlas, 2nd Edition 03, Edited by Verein Deutscher Eisenhuttenleute, 1995, pp. 541–56.

  20. L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B., 1998, vol. 29B, pp. 177–86.

  21. Mysen, B. O. Structure and Properties of Silicate Melts. Elsevier, Amsterdam. 1988.

    Google Scholar 

  22. Urbain G, Cambier F, Deletter M, Anseau MR. (1981) Brit., Ceram. Trans J, 80, 139-141.

    Google Scholar 

  23. Zhang L, Jahanshahi S. (2001) Scand. J. Metall., 30, 364-369.

    Article  Google Scholar 

  24. 24.J.H. Park, D.J. Min and H.S. Song: Metall. Mater. Trans. B., 2004, 35B, 269–75.

    Article  Google Scholar 

  25. Zhang L, Sun S, Jahanshahi S. (2007) Journal of Phase Equilibria and Diffusion, 28(1), 121-129.

    Article  Google Scholar 

  26. L. Zhang, S. Sun and S. Jahanshahi: J. Non Cryst. Solids, 2001, 24–29.

Download references

Acknowledgements

This work was carried out as part of a collaborative project between the University of New South Wales, CSIRO and BHP Billiton. Financial support including scholarship for one of the authors (SM) was provided by Australian Research Council (ARC Linkage Project LP120100672), CSIRO and BHP Billiton–TEMCO. The authors also acknowledge the assistance provided by Mr Rowan Davidson from CSIRO and Mr John Sharp from UNSW in some of the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samane Maroufi.

Additional information

Manuscript submitted July 3, 2014.

Appendix

Appendix

Calculation of NBO/T[9]

$$ \begin{aligned} Y_{\text{NBO}} & = & \sum {2[x({\text{CaO}}) + x({\text{MgO}}) + x({\text{FeO}}) + x({\text{MnO}}) + x({\text{Na}}_{2} {\text{O}}) + x({\text{K}}_{2} } {\text{O}})] \\ \quad + x({\text{MnO}}) + x({\text{Na}}_{2} {\text{O}}) + x({\text{K}}_{2} {\text{O}})] \\ \quad + 6(1 - f)x({\text{Fe}}_{2} {\text{O}}_{3} ) - 2x({\text{Al}}_{ 2} {\text{O}}_{3} ) \\ \quad - 2fx({\text{Fe}}_{2} {\text{O}}_{3} ), \\ \end{aligned} $$
$$ x_{\text{T}} = \sum {x({\text{SiO}}_{2} } ) + 2x({\text{Al}}_{2} {\text{O}}_{3} ) + 2fx({\text{Fe}}_{2} {\text{O}}_{3} ) + x({\text{TiO}}_{2} ) + 2x({\text{P}}_{2} {\text{O}}_{5} ), $$
$$ ({\text{NBO}}/{\text{T}}) = \left( {{\raise0.7ex\hbox{${Y_{\text{NB}} }$} \!\mathord{\left/ {\vphantom {{Y_{\text{NB}} } {x_{\text{T}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${x_{\text{T}} }$}}} \right), $$

where x = mol fraction,

$$ f = {\text{Fe}}^{3 + } ({\text{IV}})/({\text{Fe}}^{3 + } ({\text{IV}}) + {\text{Fe}}^{3 + } ({\text{VI}})). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroufi, S., Ciezki, G., Jahanshahi, S. et al. Dissolution Rate and Diffusivity of Silica in SiMn Slag. Metall Mater Trans B 46, 101–108 (2015). https://doi.org/10.1007/s11663-014-0215-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0215-8

Keywords

Navigation