Skip to main content
Log in

Effects of additives and temperature on dissolution rate and diffusivity of lime in Al2O3-CaO-SiO2 based slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dissolution rate of dense lime specimens in calcium aluminosilicate based melts was measured at 1430 °C to 1600 °C in air, using a rotating disk/cylinder technique. The measured dissolution rates were strongly dependent on the rotation speed with the results indicating mass transfer in the slag phase to be a rate-limiting step. At a given rotation speed, the slag chemistry and temperature had strong effects on the dissolution rate. The diffusivity of CaO in the slag was calculated from the dissolution rate and solubility data, using known mass-transfer correlations. Addition of CaF2 MnO x , FeO x , and TiO2 to the slag increased the CaO diffusivity, while SiO2 had an opposite effect. Addition of CaF2 had the strongest effect and increased the diffusivity by a factor of 3 to 5 in the temperature range of 1500 °C to 1600 °C. The deduced activation energy for diffusion of CaO in these slags ranged from about 53 to 246 kJ/mole, depending on the concentration of additives used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Matsushima, S. Yadoomaru, K. Mori, and Y. Kawai: Trans. Iron Steel Inst. Jpn., 1977, vol. 17, pp. 442–49.

    CAS  Google Scholar 

  2. T. Hamano, M. Horibe, and K. Ito: Trans. Iron Steel Inst. Jpn., 2004, vol. 44, pp. 263–67.

    CAS  Google Scholar 

  3. V.D. Eisenhuttenleute: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, 1995, pp. 21–403.

    Google Scholar 

  4. P.V. Riboud, Y. Roux, D. Lucas, and H. Gaye: Fachber. Huttenprax. Metallweiterverarb, 1981, vol. 19, pp. 859–69.

    CAS  Google Scholar 

  5. G. Urbain: Steel Res., 1987, vol. 58, pp. 111–16.

    CAS  Google Scholar 

  6. H. Hu and R.G. Reddy: High Temp Sci., 1988, vol. 28, pp. 195–202.

    CAS  Google Scholar 

  7. S. Seetharaman and D. Sichen: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 589–95.

    Google Scholar 

  8. L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 177–86.

    CAS  Google Scholar 

  9. L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 187–95.

    CAS  Google Scholar 

  10. K.C. Mills and S. Sridhar: Ironmaking and Steelmaking, 1999, vol. 26, pp. 262–68.

    Article  CAS  Google Scholar 

  11. T. Iida, H. Sakai, Y. Kita, and K. Shigeno: Trans. Iron Steel Inst. Jpn., 2000, vol. 40, pp. 110–14.

    Google Scholar 

  12. A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1015–25.

    CAS  Google Scholar 

  13. A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1027–32.

    CAS  Google Scholar 

  14. H. Keller and K. Schwerdtfeger: Metall. Trans. B, 1979, vol. 10B, pp. 551–54.

    CAS  Google Scholar 

  15. H. Towers and J. Chipman: JOM, 1957, vol. 9, pp. 769–73.

    CAS  Google Scholar 

  16. R.F. Johnston, R.A. Stark, and J. Taylor: Ironmaking and Steelmaking, 1974, vol. 1, pp. 220–27.

    CAS  Google Scholar 

  17. S. Hara, K. Akao, and K. Ogino: Tetsu-to-Hagané, 1989, vol. 75, pp. 1891–96.

    CAS  Google Scholar 

  18. S. Sun and S. Jahanshahi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 937–43.

    CAS  Google Scholar 

  19. T. Tran: Ph.D. Dissertation, University of Melbourne, Melbourne, 1997.

    Google Scholar 

  20. G. Tranell, O. Ostrovski, and S. Jahanshahi: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 61–67.

    CAS  Google Scholar 

  21. V.G. Levich: Physiochemical Hydrodynamics, Prentice-Hall, New York, NY, 1962, p. 69.

    Google Scholar 

  22. C.W. Eisenberg and W. Tobias: Chemical Engineering Progress Symp. Series, 1955, vol. 51, pp. 1–16.

    Google Scholar 

  23. M. Lee, S. Sun, S. Wright, and S. Jahanshahi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 25–29.

    CAS  Google Scholar 

  24. X. Yu, R.J. Pomfret, and K.S. Coley: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 275–79.

    CAS  Google Scholar 

  25. M. Umakoshi, K. Mori, and Y. Kawai: Tetsu-to-Hagané, 1981, vol. 67, pp. 1726–34.

    CAS  Google Scholar 

  26. A.R. Cooper and W.D. Kingery: J. Am. Ceram. Soc., 1964, vol. 97, pp. 37–43.

    Article  Google Scholar 

  27. M. Kosaka and S. Minowa: Tetsu-to-Hagané, 1966, vol. 52, pp. 22–36.

    Google Scholar 

  28. G. Urbain, F. Cambier, M. Deletter, and M.R. Anseau: Trans. Br. Ceram. Soc., 1981, vol. 80, pp. 139–41.

    CAS  Google Scholar 

  29. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1–120.

    CAS  Google Scholar 

  30. K.S. Goto, T. Kurahashi, and M. Sasabe: Metall. Trans. B, 1977, vol. 8B, pp. 523–28.

    CAS  Google Scholar 

  31. E.T. Turkdogan: Physiochemical Properties of Molten Slags and Glasses, The Metals Society, London, 1983, p. 512.

    Google Scholar 

  32. S. Glasstone, K.J. Laidlev, and H. Eyring: The Theory of Rate Processes: the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, McGraw-Hill, New York, NY, 1941, p. 516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amini, S.H., Brungs, M.P., Ostrovski, O. et al. Effects of additives and temperature on dissolution rate and diffusivity of lime in Al2O3-CaO-SiO2 based slags. Metall Mater Trans B 37, 773–780 (2006). https://doi.org/10.1007/s11663-006-0059-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0059-y

Keywords

Navigation