Skip to main content
Log in

Modeling Viscosities of CaO-MgO-FeO-MnO-SiO2 Molten Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A model for estimating the viscosity of silicate melts is proposed in this article. The structural characteristics of a silicate slag can be described by the numbers of the bridging oxygen, nonbridging oxygen, and free oxygen present in the slag. A method of calculating the numbers of the different types of oxygen ions is presented in this article, which involves a simple approximation of “complete bridge breaking.” With just a few parameters, the model provides both the temperature and composition dependencies of viscosity for the pure component: SiO2; the binary systems: MgO-SiO2, CaO-SiO2, FeO-SiO2, and MnO-SiO2; the ternary systems: CaO-MgO-SiO2, CaO-FeO-SiO2, MgO-FeO-SiO2, and CaO-MnO-SiO2; and the quaternary systems: CaO-MgO-MnO-SiO2 and CaO-FeO-MnO-SiO2. It was found that the ability of different basic metal oxides to decrease viscosity varies and is in the following hierarchy: FeO > MnO > CaO > MgO. Two factors influence the viscosity: The first is related to the mutual interaction among different ions, and the stronger the interaction, the higher the viscosity. The second factor is the size (radius) of basic oxide cation, with viscous flow becoming increasingly more difficult (i.e., viscosity increases) as the cation size increases. However, there is a paradox in the effect of cation radius (of the basic oxide) on the two factors. Thus, varying cation size causes competitive effects; smaller cationic radii give stronger interactions among ions but less hindrance to viscous flow (and vice versa for large cation radii).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J.D. Mackenzie: Chem. Rev., 1956, vol. 56, pp. 455-70.

    Article  CAS  Google Scholar 

  2. F. Fincham and F.D. Richardson: Proc. R. Soc. Lond. A, 1954, vol. 223, pp. 40-62.

    Article  CAS  Google Scholar 

  3. P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye: Facber. Hüttenprax. Metallweiter Verarb., 1981, vol. 19, pp. 859-69.

    CAS  Google Scholar 

  4. G. Urbain: Steel Res., 1987, vol. 58, pp. 111-16.

    CAS  Google Scholar 

  5. T. Iida, H. Sakal, Y. Klta, and K. Shigeno: ISIJ Int., 2000, vol. 40, pp. 110-14.

    Article  Google Scholar 

  6. K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26, pp. 262-6

    Article  CAS  Google Scholar 

  7. H.S. Ray and S. Pal: Ironmaking Steelmaking, 2004, vol. 31, pp. 125-30.

    Article  CAS  Google Scholar 

  8. A. Shankar, M. Gornerup, A.K. Lahiri, and S. Seetharaman: Ironmaking Steelmaking, 2007, vol. 34, pp. 477-81.

    Article  CAS  Google Scholar 

  9. Du Sichen, J. Bygd’en, and S. Seetharaman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 519–25.

  10. L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 177-86.

    Article  CAS  Google Scholar 

  11. Q.F. Shu and J.Y. Zhang: ISIJ Int., 2006, vol. 46, pp. 1548-53.

    Article  CAS  Google Scholar 

  12. M. Nakamoto, J. Lee, and T. Tanaka: ISIJ Int., 2007, vol. 47, pp. 1409-15.

    Article  CAS  Google Scholar 

  13. W. Linert and R.F. Jameson: Chem. Soc. Rev., 1989, vol. 18, pp. 477-505.

    Article  CAS  Google Scholar 

  14. X.P. Wu and Y.F. Zheng: J. Geophys. Res., 2003, vol. 108, pp. 2139-44.

    Article  Google Scholar 

  15. X.P. Wu and Y.F. Zheng: Appl. Phys. Lett., 2005, vol. 87, p. 252116.

    Article  Google Scholar 

  16. G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1061-72.

    Article  CAS  Google Scholar 

  17. R. Rossin, J. Bersan, and G. Urbain: Revue Hautes Temperatures Refractoires, 1964, vol. 1, pp. 159-70.

    CAS  Google Scholar 

  18. R. Bruckner: Glastech. Ber., 1964, vol. 37, p. 413.

    Google Scholar 

  19. V.K. Leko, E.V. Meshcheryakova, N.K. Gusakova, and R.B. Lebedeva: Opt. Mekh. Prom., 1974, vol. 12, pp. 42-45.

    Google Scholar 

  20. S.G. Loryan, K.A. Kostanyan, R.S. Saringyulyan, V.M. Kafyrov, and E.K. Bogdasaryan: Elektron. Tekh., Ser. 6, Mater., 1976, vol. 2, p. 53.

  21. G. Hofmaier and G. Urbain: Sci. Ceram., 1968, vol. 4, pp. 25-32.

    Google Scholar 

  22. G.W. Toop and C.S. Samis: Trans. TMS-AIME, 1962, vol. 224, pp. 877-87.

    Google Scholar 

  23. G. Ottonello, R. Moretti, L. Marini, and M.V. Zuccolini: Chem. Geol., 2001, vol. 174, pp. 157-79.

    Article  CAS  Google Scholar 

  24. T. Yokokawa and K. Niwa: Trans. Jpn. Inst. Met., 1969, vol. 10, pp. 81-84.

    CAS  Google Scholar 

  25. C.R. Masson, I.B. Smith, and S.G. Whiteway: Can. J. Chem., 1970, vol. 48, pp. 1456-64.

    Article  CAS  Google Scholar 

  26. P.J. Flory: Principles of Polymer Chemistry, Cornell University Press, London, UK, 1966.

    Google Scholar 

  27. H. Gaye and J. Welfringer: Second International Symposium on Metallurgical Slags and Fluxes, The Metallurgical Society of AIME, Warrendale, PA, 1984, pp. 357-75.

    Google Scholar 

  28. T. Iida, H. Sakai, Y. Kita, and K. Murakami: High Temp. Mater. Processes., 2000, vol. 19, pp. 153-64.

    Article  CAS  Google Scholar 

  29. J.O.M. Bockris, J.D. Mackenzie, and J.A. Kitchener: Trans. Faraday Soc., 1955, vol. 51, pp. 1734-48.

    Article  CAS  Google Scholar 

  30. G. Urbain: Rev. Int. Hautes Temp. Refract., 1974, vol. 11, pp. 133-45.

    CAS  Google Scholar 

  31. V.G. Hofmaier: Berg und Hutterun. Monatsh., 1968, vol. 113, pp. 270-81.

    CAS  Google Scholar 

  32. J.O.M. Bockris and D.C. Lowe: Proc. R. Soc. Lond. A, 1954, vol. 226, pp. 423-35.

    Article  CAS  Google Scholar 

  33. K. Mizoguchi, M. Yamane, and Y. Suginohara: Nippon Kinzoku Gakkaishi, 1986, vol. 50, pp. 76-82.

    CAS  Google Scholar 

  34. P. Kozakevitch: Rev. Metall., 1960, vol. 57, pp. 149-60.

    CAS  Google Scholar 

  35. F. Ji, S.C. Du, and S. Seetharaman: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 827-34.

    Article  CAS  Google Scholar 

  36. M. Kawahara, K. Mizoguchi, and Y. Suginohara: Bull. Kyushu Inst. Technol. Sci. Technol., 1981, vol. 43, pp. 53-59.

    Google Scholar 

  37. J.S. Machin and T.B. Yee: J. Am. Ceram. Soc., 1948, vol. 31, pp. 200-04.

    Article  CAS  Google Scholar 

  38. T. Yasukouchi, K. Nakashima, and K. Mori: Tetsu-To-Hagane, 1999, vol. 85, pp. 571-77.

    CAS  Google Scholar 

  39. T. Licko and V. Danek: Phys. Chem. Glasses, 1986, vol. 27, pp. 22-26.

    CAS  Google Scholar 

  40. M. Kucharski, N.M. Stubina, and J.M. Toguri: Can. Metall. Q., 1989, vol. 28, pp. 7-11.

    CAS  Google Scholar 

  41. Y. Shiraishi, K. Ikeda, A. Tamura, and T. Saito: Trans. Jpn. Inst. Met., 1978, vol. 19, pp. 264-74.

    CAS  Google Scholar 

  42. J.S. Machin and T.B. Yee: J. Am. Ceram. Soc., 1954, vol. 37, pp. 177-86.

    Article  CAS  Google Scholar 

  43. J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 35, pp. 322-26.

    Article  CAS  Google Scholar 

  44. C.M. Scarfe and D.J. Cronin: Amer. Mineral., 1986, vol. 71, pp. 767-71.

    CAS  Google Scholar 

  45. D. Sykes, J. Dickinson, E. James, R.W. Luth, and C.M. Scarfe: Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 1291-95.

    Article  CAS  Google Scholar 

  46. F.Z. Ji, S. Du, and S. Seetharaman: Ironmaking Steelmaking, 1998, vol. 25, pp. 309-16.

    CAS  Google Scholar 

  47. L. Segers, A. Fontana, and R. Winand: Electrochim. Acta, 1979, vol. 24, pp. 213-18.

    Article  CAS  Google Scholar 

  48. F.Z. Ji: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 181-86.

    Article  CAS  Google Scholar 

  49. Y. Waseda and J.M. Toguri: The Structure and Properties of Oxide Melts, World Scientific, Singapore, 1998, p. 3.

    Google Scholar 

  50. R.D. Shannon: Acta Crystallogr. A, 1976, vol. 32A, pp. 751-67.

    Article  Google Scholar 

  51. L. Pauling: The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1960.

    Google Scholar 

  52. G.H. Zhang, B.-J. Yan, F.S. Li, and K.C. Chou: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 261-64.

    Article  Google Scholar 

  53. Y. Suginohara, T. Yanagase, and H. Ito: Trans. Japan Inst. Metals, 1962, vol. 3, pp. 227-33.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Chinese Natural Science Foundation for their kind support under the contract 51174022, and the Changjiang Scholars and Innovative Research Team in University (PCSIRT) for support under contract number IRT0708. Thanks are also given to the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Chih Chou.

Additional information

Manuscript submitted June 3, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, GH., Chou, KC., Xue, QG. et al. Modeling Viscosities of CaO-MgO-FeO-MnO-SiO2 Molten Slags. Metall Mater Trans B 43, 64–72 (2012). https://doi.org/10.1007/s11663-011-9589-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9589-z

Keywords

Navigation