Skip to main content
Log in

Mechanical Properties of Intercritically Annealed X80 Line Pipe Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microalloyed low-carbon steels are used for line pipe applications as they combine high strength and acceptable fracture toughness with good weldability. During multi-pass welding, the strength and impact toughness of the material in the heat-affected zone (HAZ) is potentially degraded, in particular the regions where the thermal fields from multi-pass welds overlap (for example: the intercritically reheated coarse grain heat-affected zone, ICCGHAZ). Using a Gleeble thermomechanical simulator, bulk microstructures were produced that are representative for the ICCGHAZ for two high-strength X80 line pipe steels. Here, the first thermal cycle produces a bainitic microstructure that is characteristic of the coarse grain heat-affected zone (CGHAZ) and the second cycle involves intercritical annealing of this region to form microstructures representative of the ICCGHAZ. The effect of the intercritical austenite fraction and the resulting martensite–austenite (M/A) constituents on the tensile properties and the ductile-brittle transition temperature (DBTT) has been quantified for two steels with different carbon contents, i.e., 0.063 and 0.028 wt. pct. Detailed fractography studies have been conducted to evaluate the fracture mechanisms with respect to the microstructural features. Upon intercritical annealing (relevant to ICCGHAZ), the ductile–brittle transition temperature was above room temperature when a nearly continuous necklace of M/A formed on the prior austenite grain boundaries (for M/A ≈ 10 pct). Finally, the role of carbon content on the yield strength and plasticity of martensite has been considered for the tensile fracture behavior and ductile–brittle transition temperature. It is proposed that as the average carbon content of the M/A decreases (both due to (i) a decrease in the bulk carbon content of the steel and (ii) an increase in the volume fraction of austenite formed during intercritical annealing), martensite plasticity was possible which reduced nucleation of voids or cracks at the M/A–bainite interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Schemmann, C. Stallybrass, J. Schröder, A. Liessem, and S. Zaefferer: in Proceedings of the 2018 12th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2018, pp. 1–7.

  2. L.E. Collins, D. Bai, F. Hamad, and X. Chen: in The Seventeenth International Offshore and Polar Engineering Conference, 2007.

  3. 3 B. Hutchinson, J. Komenda, G.S. Rohrer, and H. Beladi: Acta Mater., 2015, vol. 97, pp. 380–91.

    Article  CAS  Google Scholar 

  4. 4 A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337–48.

    Article  CAS  Google Scholar 

  5. 5 M. Mohammadijoo, S. Kenny, L. Collins, H. Henein, and D.G. Ivey: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2247–59.

    Article  Google Scholar 

  6. 6 Y. Li and T.N. Baker: Mater. Sci. Technol., 2010, vol. 26, pp. 1029–40.

    Article  CAS  Google Scholar 

  7. J.A. Gianetto, F. Fazeli, Y. Chen, and T. Smith: in Proceedings of the 2014 10th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2014, pp. 1–11.

  8. 8 X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, and S.V. Subramanian: Mater. Sci. Eng. A, 2017, vol. 704, pp. 448–58.

    Article  CAS  Google Scholar 

  9. 9 N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.

    Article  CAS  Google Scholar 

  10. N. Romualdi, M. Militzer, W. Poole, L. Collins, and R. Lazor: in Proceedings of the 2020 13th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2020, pp. 1–10.

  11. 11 T. Garcin, M. Militzer, W.J. Poole, and L. Collins: Mater. Sci. Technol., 2016, vol. 0836, pp. 1–14.

    Google Scholar 

  12. T. Garcin, K. Ueda, and M. Militzer: Metall. Mater. Trans. A, vol. 48, pp. 796–808.

    Article  CAS  Google Scholar 

  13. 13 J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3363–75.

    Article  CAS  Google Scholar 

  14. 14 M. Bellavoine, M. Dumont, M. Dehmas, A. Stark, N. Schell, J. Drillet, V. Hébert, and P. Maugis: Mater. Charact., 2019, vol. 154, pp. 20–30.

    Article  CAS  Google Scholar 

  15. 15 S. Lee, B.C. Kim, and D. Kwon: Metall. Trans. A, 1992, vol. 23, pp. 2803–16.

    Article  CAS  Google Scholar 

  16. 16 N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich: Mater. Sci. Eng. A, 2016, vol. 662, pp. 481–91.

    Article  CAS  Google Scholar 

  17. 17 J.L.M. Andia, L.F.G. de Souza, and I.S. Bott: Mater. Sci. Forum, 2014, vol. 783–786, pp. 657–62.

    Article  Google Scholar 

  18. 18 C.L. Davis and J.E. King: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 563–73.

    Article  CAS  Google Scholar 

  19. 19 C.L. Davis and J.E. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8–15.

    Article  CAS  Google Scholar 

  20. 20 Y. Li, D.N. Crowther, M.J.W. Green, P.S. Mitchell, and T.N. Baker: ISIJ Int., 2001, vol. 41, pp. 46–55.

    Article  CAS  Google Scholar 

  21. 21 E. Bonnevie, G. Ferrière, A. Ikhlef, D. Kaplan, and J.M. Orain: Mater. Sci. Eng. A, 2004, vol. 385, pp. 352–8.

    Article  Google Scholar 

  22. 22 X. Li, C. Shang, X. Ma, S.V. Subramanian, R.D.K. Misra, and J. Sun: Mater. Charact., 2018, vol. 138, pp. 107–12.

    Article  CAS  Google Scholar 

  23. 23 X. Li, X. Ma, S. V. Subramanian, R.D.K. Misra, and C. Shang: Metall. Mater. Trans. E, 2015, vol. 2, pp. 1–11.

    Google Scholar 

  24. 24 P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Metall. Mater. Trans. A, 2014, vol. 45, pp. 384–94.

    Article  Google Scholar 

  25. 25 N. Huda, Y. Wang, L. Li, and A.P. Gerlich: Mater. Sci. Eng. A, 2019, vol. 765, p. 138301.

    Article  CAS  Google Scholar 

  26. 26 A. Lambert-Perlade, J. Drillet, A.F. Gourgues, T. Sturel, and A. Pineau: Sci. Technol. Weld. Join., 2000, vol. 5, pp. 168–73.

    Article  Google Scholar 

  27. 27 B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22, pp. 139–49.

    Article  CAS  Google Scholar 

  28. A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau: Metall. Mater. Trans., 2004, vol. 35, pp. 1039–53.

    Article  Google Scholar 

  29. 29 N. Fujita, N. Ishikawa, F. Roters, C.C. Tasan, and D. Raabe: Int. J. Plast., 2018, vol. 104, pp. 39–53.

    Article  CAS  Google Scholar 

  30. 30 F. Matsuda, K. Ikeuchi, H. Okada, I. Hrivnak, and H. Park: Trans. JWRI, 1994, vol. 23, pp. 231–8.

    CAS  Google Scholar 

  31. 31 L. Li, T. Han, and B. Han: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1254–63.

    Article  CAS  Google Scholar 

  32. 32 K. Banerjee, M. Militzer, M. Perez, and X. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3161–72.

    Article  Google Scholar 

  33. M. Mandal, W.J. Poole, M. Militzer, T. Garcin, and L. Collins: in 2018 12th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2018, pp. 1–8.

  34. M. Mandal: Ph.D. Thesis, The University of British Columbia, Vancouver, 2020.

  35. M.J. Gaudet: Ph.D. Thesis, The University of British Columbia, Vancouver, 2015.

  36. 36 T.A. Kop, J. Sietsma, and S. van der Zwaag: Mater. Sci. Technol., 2001, vol. 17, pp. 1569–74.

    Article  CAS  Google Scholar 

  37. 37 F.S. Lepera: Metallography, 1979, vol. 12, pp. 263–8.

    Article  CAS  Google Scholar 

  38. 38 I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, and H.S. Seung: Bioinformatics, 2017, vol. 33, pp. 2424–6.

    Article  CAS  Google Scholar 

  39. 39 Y. Sakai, K. Tamanoi, and N. Ogura: Nucl. Eng. Des., 1989, vol. 115, pp. 31–9.

    Article  CAS  Google Scholar 

  40. 40 M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole: Acta Mater., 2012, vol. 60, pp. 1015–26.

    Article  CAS  Google Scholar 

  41. J.M. Reichert, W.J. Poole, M. Militzer, and L. Collins: in Proceedings of the 2014 10th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2014, pp. 1–7.

  42. 42 N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2018, vol. 145, pp. 154–64.

    Article  CAS  Google Scholar 

  43. 43 H.I. Aaronson, W.T. Reynolds, Jr., G.J. Shiflet, and G. Spanos: Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.

    Article  CAS  Google Scholar 

  44. H.K.D.H. Bhadeshia: Bainite in Steels, 3rd edn., Maney Publishing, 2015.

  45. 45 A. Borgenstam, M. Hillert, and J. Ågren: Acta Mater., 2009, vol. 57, pp. 3242–52.

    Article  CAS  Google Scholar 

  46. 46 X. Li, C. Shang, X. Ma, B. Gault, S.V. Subramanian, J. Sun, and R.D.K. Misra: Scr. Mater., 2017, vol. 139, pp. 67–70.

    Article  CAS  Google Scholar 

  47. M. De Meyer, D. Vanderschueren, K. De Blauwe, and B.C. De Cooman: in 41st MWSP Conference Proceedings, ISS, Vol XXXVII, 1999, pp. 483–91.

  48. 48 C.P. Scott and J. Drillet: Scr. Mater., 2007, vol. 56, pp. 489–92.

    Article  CAS  Google Scholar 

  49. 49 C.W. Sinclair, W.J. Poole, and Y. Bréchet: Scr. Mater., 2006, vol. 55, pp. 739–42.

    Article  CAS  Google Scholar 

  50. 50 P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, UK, 1990.

    Google Scholar 

  51. 51 M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38, pp. 328–39.

    Article  CAS  Google Scholar 

  52. 52 M. Mazinani and W.J. Poole: Adv. Mater. Res., 2007, vol. 15–17, pp. 774–9.

    Google Scholar 

  53. 53 S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  54. 54 A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6, pp. 825–37.

    Article  CAS  Google Scholar 

  55. 55 F.A. McClintock: Int. J. Fract. Mech., 1968, vol. 4, pp. 101–30.

    Article  Google Scholar 

  56. 56 R. Iricibar, G. Leroy, and J.D. Embury: Met. Sci., 1980, vol. 14, pp. 337–43.

    Article  Google Scholar 

  57. L.M. Brown and J.D. Embury: in Proc. 3rd Int. Conf. Strengths of Metals and Alloys, Inst. of Metals, London, England, 1973, pp. 164–9.

  58. 58 G. Bao, J.W. Hutchinson, and R.M.M. McMeeking: Acta Metall. Mater., 1991, vol. 39, pp. 1871–82.

    Article  Google Scholar 

  59. W.C. Leslie: The Physical Metallurgy of Steels, Mc-Graw Hill, 1981.

  60. 60 W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 5–26.

    Article  CAS  Google Scholar 

  61. 61 G. Krauss: Principles of Heat Treatment of Steels, American Society for Metals, Metals Park, Ohio, 1980.

    Google Scholar 

  62. W.A. Backofen: Deformation Processing, Addison-Wesley, 1972.

  63. 63 N.N. Davidenkov: Dynamic Testing of Metals, ONTI, Moscow, 1936.

    Google Scholar 

  64. 64 E. Orowan: Trans. Inst. Engrs Shipbuild. Scotl., 1945, vol. 89, pp. 165–215.

    CAS  Google Scholar 

  65. 65 J.F. Knott: Fundamentals of Fracture Mechanics, 1st edn., Butterworth & Co Publishers Ltd., London, 1973.

    Google Scholar 

  66. M.A. Meyers and K.K. Chawla: Mechanical Behaviour of Materials, 2nd edn., Cambridge University Press, Cambridge , 2009.

    Google Scholar 

  67. S. Winkler, A. Thompson, C. Salisbury, M. Worswick, I. Riemsdijk, and R. Mayer: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1350–8.

    Article  CAS  Google Scholar 

  68. 68 R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  69. 69 T. Jia and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 614–21.

    Article  Google Scholar 

Download references

Acknowledgment

This work was undertaken, in part, thanks to funding from the Canada Research Chair program (Poole). We acknowledge the financial support from Evraz NA Regina, TC Energy, and NSERC (Canada) for funding this research work. We would like to thank Evraz NA Regina and Dr. Robert Lazor (TC Energy) for supplying the steel plates, providing Charpy testing facilities and for stimulating discussions. We are grateful to Prof. David Embury (McMaster University) for providing insights on the analysis of this research work. We also thank Dr. Thomas Garcin and Brian Tran for their assistance with Gleeble testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumanti Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 24, 2020; accepted January 2, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., Poole, W., Militzer, M. et al. Mechanical Properties of Intercritically Annealed X80 Line Pipe Steels. Metall Mater Trans A 52, 1336–1352 (2021). https://doi.org/10.1007/s11661-021-06152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06152-5

Navigation