Skip to main content
Log in

Changes in microstructure and properties of weld heat-affected zone of high-strength low-alloy steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The evolution of the microstructure and toughness of APL5L X80 pipeline steel after thermal welding simulation was investigated by X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The results indicated that primary heat-affected zones can be divided into weld, coarse-grained, fine-grained, intercritical, and subcritical zones. The microstructure of the weld zone is mainly composed of bainitic ferrite and a small amount of granular bainite; however, the original austenite grains are distributed in the columnar grains. The structure of the coarse-grained zone is similar to that of the weld zone, but the original austenite grains are equiaxed. In contrast, the microstructure in the fine-grained zone is dominated by fine granular bainite, and the effective grain size is only 8.15 μm, thus providing the highest toughness in the entire heat-affected zone. The intercritical and subcritical zones were brittle valley regions, and the microstructure was dominated by granular bainite. However, the martensite–austenite (M/A) constituents are present in island chains along the grain boundaries, and the coarse size of the M/A constituents seriously reduces the toughness. The results of the crack propagation analyzes revealed that high-angle grain boundaries can significantly slow down crack growth and change the crack direction, thereby increasing the material toughness. The impact toughness of the low-temperature tempering zone was equivalent to that of the columnar grain zone, and the impact toughness was between those of the critical and fine-grained zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Zhang, J. Wang, S. Liu, L. Yan, C. Song, H. Yu, Mater. Sci. Eng. A 861 (2022) 144355.

    Article  Google Scholar 

  2. L. Wang, S. Wang, Materials 16 (2023) 3578.

    Article  Google Scholar 

  3. L.Y. Sun, X. Liu, X. Xu, S.W. Lei, H.G. Li, Q.J. Zhai, J. Iron Steel Res. Int. 29 (2022) 1513–1525.

    Article  Google Scholar 

  4. O. Panchenko, I. Kladov, D. Kurushkin, L. Zhabrev, E. Ryl'kov, M. Zamozdra, Mater. Sci. Eng. A 851 (2022) 143569.

    Article  Google Scholar 

  5. X. Ye, S. Cui, T. Liu, Q. Ma, G. Liu, Z. Huang, J. Guo, S. Yin, Coatings 13 (2023) 706.

    Article  Google Scholar 

  6. G. Ma, Y. Chen, G. Wu, S. Wang, T. Li, W. Liu, H. Wu, J. Gao, H. Zhao, C. Zhang, X. Mao, Crystals 13 (2023) 714.

    Article  Google Scholar 

  7. Q. Chang, Y. Cao, Y. Zhen, G. Wu, F. Li, Int. J. Pres. Ves. Pip. 20 (2023) 104940.

    Article  Google Scholar 

  8. Y. Wang, Z. Guo, X. Bai, C. Yuan, Ocean Eng. 235 (2021) 109385.

    Article  Google Scholar 

  9. X. Wang, D. Wang, L. Dai, C. Deng, C. Li, Y. Wang, K. Shen, Materials 15 (2022) 6646.

    Article  Google Scholar 

  10. G. Wang, J. Wang, L. Yin, H. Hu, Z. Yao, Materials 13 (2020) 121.

    Article  Google Scholar 

  11. Y. Dong, D. Liu, L. Hong, J. Liu, X. Zuo, Metals 12 (2022) 716.

    Article  Google Scholar 

  12. Y. Liu, R. Liu, B. Liu, Z. Zhu, Y. Li, H. Chen, Mater. Charact. 186 (2022) 111811.

    Article  Google Scholar 

  13. J. Luo, S. Luo, L. Li, L. Zhang, G. Wu, L. Zhu, Nat. Gas Ind. B 6 (2019) 138–144.

    Article  Google Scholar 

  14. X. Wang, D. Wang, C. Deng, C. Li, Materials 15 (2022) 4458.

    Article  Google Scholar 

  15. Z. Gao, B. Gong, B. Wang, D. Wang, C. Deng, Y. Yu, Int. J. Hydrogen Energy 46 (2021) 38535–38550.

    Article  Google Scholar 

  16. Z. Gu, X. Zhu, Q. Ding, S. Duan, P. Wang, X. Lu, Eng. Fail. Anal. 150 (2023) 107299.

    Article  Google Scholar 

  17. M. Aranđelović, S. Sedmak, R. Jovičić, A. Petrović, S. Dikić, Procedia Struct. Integr. 42 (2022) 985–991.

    Article  Google Scholar 

  18. X. Qi, P. Huan, X. Wang, Z. Liu, X. Shen, Y. Gao, H. Di, Mater. Today Commun. 31 (2022) 103413.

    Article  Google Scholar 

  19. J.M. Giarola, J.W. Calderón-Hernández, J.M. Quispe-Avilés, J.A. Avila, W.W. Bose Filho, Int. J. Hydrogen Energy 46 (2021) 28166–28179.

  20. M. St. Węglowski, S. Dymek, M. Kopyściański, J. Niagaj, J. Rykała, W. De Waele, S. Hertelé, Archiv. Civ. Mech. Eng. 20 (2020) 14.

  21. J. Jiang, Z.Y. Peng, M. Ye, Y.B. Wang, X. Wang, W. Bao, J. Mater. Civ. Eng. 33 (2021) 04021186.

    Article  Google Scholar 

  22. M. Mahmoudiniya, A.H. Kokabi, M. Goodarzi, L.A.I. Kestens, Mater. Sci. Eng. A 769 (2020) 138490.

    Article  Google Scholar 

  23. J. Du, J. Li, Y. Feng, J. Ning, S. Liu, F. Zhang, Mater. Des. 221 (2022) 110953.

    Article  Google Scholar 

  24. K.S. Arora, S.R. Pandu, N. Shajan, P. Pathak, M. Shome, Int. J. Pres. Ves. Pip. 163 (2018) 36–44.

    Article  Google Scholar 

  25. J.C.F. Jorge, L.F.G. de Souza, M.C. Mendes, I.S. Bott, L.S. Araújo, V.R. dos Santos, J.M.A. Rebello, G.M. Evans, J. Mater. Res. Technol. 10 (2021) 471–501.

    Article  Google Scholar 

  26. X. Yang, X. Di, X. Liu, D. Wang, C. Li, Mater. Charact. 155 (2019) 109818.

    Article  Google Scholar 

  27. M.F.G. Ramirez, J.W.C. Hernández, D.H. Ladino, M. Masoumi, H. Goldenstein, J. Mater. Res. Technol. 14 (2021) 1848–1861.

    Article  Google Scholar 

  28. N. Huda, Y. Wang, L. Li, A.P. Gerlich, Mater. Sci. Eng. A 765 (2019) 138301.

    Article  Google Scholar 

  29. K. Yin, F. Wei, J. Wang, H. Ma, P. Jin, Mater. Today Commun. 35 (2023) 106234.

    Article  Google Scholar 

  30. R. Chen, Z. Li, Q. Zhang, X. Li, Corros. Sci. 209 (2022) 110784.

    Article  Google Scholar 

  31. S. Chen, Q. Yu, Scripta Mater. 163 (2019) 148–151.

    Article  Google Scholar 

  32. R. Song, D. Ponge, R. Kaspar, D. Raabe, Int. J. Mater. Res. 95 (2004) 513–517.

    Article  Google Scholar 

  33. M. Glienke, M. Vaidya, K. Gururaj, L. Daum, B. Tas, L. Rogal, K.G. Pradeep, S.V. Divinski, G. Wilde, Acta Mater. 195 (2020) 304–316.

    Article  Google Scholar 

  34. Y. Wang, X. Ma, G. Zhao, X. Xu, X. Chen, C. Zhang, J. Mater. Sci. Technol. 82 (2021) 161–178.

    Article  Google Scholar 

  35. Q. Ren, Z. Kou, J. Wu, T. Hou, P. Xu, Metals 13 (2023) 771.

    Article  Google Scholar 

  36. Y. Fan, G. Gao, X. Gui, B. Bai, Z. Yang, Int. J. Fatigue 173 (2023) 107706.

    Article  Google Scholar 

  37. S.G. Lee, S.S. Sohn, B. Kim, W.G. Kim, K.K. Um, S. Lee, Mater. Sci. Eng. A 715 (2018) 332–339.

    Article  Google Scholar 

  38. X. Wang, Z. Wang, Z. Xie, X. Ma, S. Subramanian, C. Shang, X. Li, J. Wang, Math. Biosci. Eng. 16 (2019) 7494–7509.

    Article  Google Scholar 

  39. S.G. Lee, B. Kim, S.S. Sohn, W.G. Kim, K.K. Um, S. Lee, Mater. Sci. Eng. A 760 (2019) 125–133.

    Article  Google Scholar 

  40. N. Huda, A. Midawi, J.A. Gianetto, A.P. Gerlich, J. Mater. Res. Technol. 12 (2021) 613–628.

    Article  Google Scholar 

  41. Z. Liao, Y. Dong, Y. Du, X. Wang, M. Qi, H. Wu, X. Gao, L. Du, J. Mater. Res. Technol. 23 (2023) 1471–1486.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from National Key Research and Development Program of China (2017YFBO304900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-jun Jia.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Sj., Ma, Ql., Hou, Y. et al. Changes in microstructure and properties of weld heat-affected zone of high-strength low-alloy steel. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01133-x

Keywords

Navigation