Skip to main content
Log in

Temperature Dependence of Mechanical Properties for Advanced Line Pipe Steels With Bainitic Microstructures

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

There is currently significant interest in developing quantitative linkages between microstructures and mechanical properties (yield stress and ductile–brittle transition temperature) for the weld heat-affected zone of pipelines. In this study, two line pipe steels with carbon contents of 0.03 and 0.06 wt pct were subjected to idealized thermal treatments to create microstructures that are representative for the coarse grained heat-affected zone (CGHAZ) for submerged arc and gas metal arc welds. The microstructure was characterized by a combination of optical metallography and electron backscatter diffraction (EBSD) mapping. Tensile tests and Charpy impact tests were conducted over a range of temperatures between ambient and − 196 °C. Microstructure-property models were developed for the yield strength and cleavage stress as a function of temperature. The ductile–brittle transition temperature was rationalized in a classical approach where plastic yielding and cleavage fracture are competitive processes. The results present a quantitative framework to predict yield stress and the ductile–brittle transition temperature based on the characteristics of the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Mohammadijoo, S. Kenny, L. Collins, H. Henein, and D.G. Ivey: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2247–59.

    Article  Google Scholar 

  2. N. Huda, R. Lazor, and A.P. Gerlich: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4166–79.

    Article  Google Scholar 

  3. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 384–94.

    Article  Google Scholar 

  4. A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1039–53.

    Article  Google Scholar 

  5. X. Li, X. Ma, S.V. Subramanian, R.D.K. Misra, and C. Shang: Metall. Mater. Trans. E, 2015, vol. 2, pp. 1–11.

    Google Scholar 

  6. M. Mandal, W. Poole, M. Militzer, and L. Collins: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 1336–52.

    Article  Google Scholar 

  7. C.L. Davis and J.E. King: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 563–73.

    Article  CAS  Google Scholar 

  8. B. Hutchinson, J. Komenda, G.S. Rohrer, and H. Beladi: Acta Mater., 2015, vol. 97, pp. 380–91.

    Article  CAS  Google Scholar 

  9. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337–48.

    Article  CAS  Google Scholar 

  10. X.L. Wang, Z.Q. Wang, X.P. Ma, S.V. Subramanian, Z.J. Xie, C.J. Shang, and X.C. Li: Mater. Charact., 2018, vol. 140, pp. 312–19.

    Article  CAS  Google Scholar 

  11. T. Garcin, M. Militzer, W.J. Poole, and L. Collins: Mater. Sci. Technol., 2016, vol. 0836, pp. 1–14.

    Google Scholar 

  12. X. Li, X. Ma, S.V. Subramanian, C. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 616, pp. 141–47.

    Article  CAS  Google Scholar 

  13. X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, and S.V. Subramanian: Mater. Sci. Eng. A, 2017, vol. 704, pp. 448–58.

    Article  CAS  Google Scholar 

  14. N. Romualdi, M. Militzer, W. Poole, L. Collins, and R. Lazor: in Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, American Society of Mechanical Engineers, 2020, pp. 1–10.

  15. M.J. Gaudet: PhD Thesis, The University of British Columbia, Vancouver, 2015.

  16. J.M. Reichert, W.J. Poole, M. Militzer, and L. Collins: in Proceedings of the 2014 10th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2014, pp. 1–7.

  17. T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1003–13.

    Article  CAS  Google Scholar 

  18. N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.

    Article  CAS  Google Scholar 

  19. N. Huda, J. Gianetto, Y. Ding, R. Lazor, and A.P. Gerlich: Mater. Sci. Eng. A, 2019, vol. 768, p. 138475.

    Article  CAS  Google Scholar 

  20. K. Banerjee, M. Militzer, M. Perez, and X. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3161–72.

    Article  Google Scholar 

  21. M. Mandal: PhD Thesis, The University of British Columbia, Vancouver, 2020.

  22. J.A. Gianetto, F. Fazeli, Y. Chen, and T. Smith: in Proceedings of the 2014 10th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2014, pp. 1–11.

  23. ASTM E1382-97: 2015.

  24. T.A. Kop, J. Sietsma, and S. van der Zwaag: Mater. Sci. Technol., 2001, vol. 17, pp. 1569–74.

    Article  CAS  Google Scholar 

  25. F.S. Lepera: Metallography, 1979, vol. 12, pp. 263–68.

    Article  CAS  Google Scholar 

  26. I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, and H.S. Seung: Bioinformatics, 2017, vol. 33, pp. 2424–26.

    Article  CAS  Google Scholar 

  27. M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole: Acta Mater., 2012, vol. 60, pp. 1015–26.

    Article  CAS  Google Scholar 

  28. E. Gamsjäger, M. Militzer, F. Fazeli, J. Svoboda, and F.D. Fischer: Comput. Mater. Sci., 2006, vol. 37, pp. 94–100.

    Article  Google Scholar 

  29. M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. van der Zwaag, and H. Zurob: Mater. Sci. Eng. R, 2015, vol. 92, pp. 1–38.

    Article  Google Scholar 

  30. M. Militzer and Y. Brechet: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2273–82.

    Article  CAS  Google Scholar 

  31. G. Miyamoto, K. Yokoyama, and T. Furuhara: Acta Mater., 2019, vol. 177, pp. 187–97.

    Article  CAS  Google Scholar 

  32. H. Dong, Y. Zhang, G. Miyamoto, H. Chen, Z. Yang, and T. Furuhara: Scripta Mater., 2020, vol. 188, pp. 59–63.

    Article  CAS  Google Scholar 

  33. C. Liu, Z. Zhao, D.O. Northwood, and Y. Liu: J. Mater. Process. Technol., 2001, vol. 113, pp. 556–62.

    Article  CAS  Google Scholar 

  34. N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2018, vol. 145, pp. 154–64.

    Article  CAS  Google Scholar 

  35. G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 6393–6403.

    Article  CAS  Google Scholar 

  36. F. Archie and S. Zaefferer: Mater. Sci. Eng. A, 2018, vol. 731, pp. 539–50.

    Article  CAS  Google Scholar 

  37. S. Kang, J.G. Speer, R.W. Regier, H. Nako, S.C. Kennett, and K.O. Findley: Mater. Sci. Eng. A, 2016, vol. 669, pp. 459–68.

    Article  CAS  Google Scholar 

  38. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-I.I.S.-M.M. Lee, Y.-K.K. Lee, S.-I.I.S.-M.M. Lee, and B. Hwang: Acta Mater., 2017, vol. 122, pp. 199–206.

  39. J.M. Reichert: PhD Thesis, The University of British Columbia, Vancouver, 2016.

  40. R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  41. H.J. Frost and M. F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, 1982.

  42. P. Guyot and J.E. Dorn: Can. J. Phys., 1967, vol. 45, pp. 983–1016.

    Article  Google Scholar 

  43. C.H. Young and H.K.D.H. Bhadeshia: Mater. Sci. Technol. (United Kingdom), 1994, vol. 10, pp. 209–14.

    Article  CAS  Google Scholar 

  44. K. Zhu, O. Bouaziz, C. Oberbillig, and M. Huang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6614–19.

    Article  Google Scholar 

  45. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4972–82.

    Article  Google Scholar 

  46. A. Iza-Mendia and I. Gutiérrez: Mater. Sci. Eng. A, 2013, vol. 561, pp. 40–51.

    Article  CAS  Google Scholar 

  47. P. Choquet, P. Fabregue, J. Guisti, B. Chamont, J. N. Pezant, and F. Blanchet: in Proceedings of International Conference on Mathematical modelling of Hot Rolling of Steel, CIMM, 1990, pp. 34–44.

  48. S. Roy, N. Romualdi, K. Yamada, W. Poole, M. Militzer, and L. Collins: JOM, 2022, vol. 74, pp. 2395–2401.

    Article  CAS  Google Scholar 

  49. G.I. Taylor: Proc. R. Soc. A, 1934, vol. 145, pp. 362–87.

    CAS  Google Scholar 

  50. G.I. Taylor: Proc. R. Soc. A, 1934, vol. 145, pp. 388–404.

    CAS  Google Scholar 

  51. M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1013–19.

    Google Scholar 

  52. Y. Sakai, K. Tamanoi, and N. Ogura: Nucl. Eng. Des., 1989, vol. 115, pp. 31–39.

    Article  CAS  Google Scholar 

  53. E. Orowan: Trans. Inst. Engrs Shipbuild. Scotl., 1945, vol. 89, pp. 165–215.

    CAS  Google Scholar 

  54. N.N. Davidenkov: Dynamic Testing of Metals, ONTI, Moscow, 1936.

    Google Scholar 

  55. M.A. Meyers and K.K. Chawla: Mechanical Behaviour of Materials, 2nd ed. Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  56. J.F. Knott: Fundamentals of Fracture Mechanics, 1st ed. Butterworth & Co Publishers Ltd., London, 1973.

    Google Scholar 

  57. S. Winkler, A. Thompson, C. Salisbury, M. Worswick, I. Riemsdijk, and R. Mayer: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1350–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was undertaken, in part, thanks to funding from the Canada Research Chair program (Poole). We acknowledge the financial support from Evraz NA Regina, TC Energy and NSERC (Canada) for funding this research work. We would like to thank Evraz NA, Regina and Dr. Robert Lazor (TC Energy) for supplying the steel plates, providing Charpy testing facilities and for stimulating discussions. We are grateful to Prof. David Embury (McMaster University) for providing insights on the analysis of this research work.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumanti Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., Poole, W.J., Militzer, M. et al. Temperature Dependence of Mechanical Properties for Advanced Line Pipe Steels With Bainitic Microstructures. Metall Mater Trans A 54, 3086–3100 (2023). https://doi.org/10.1007/s11661-023-07072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07072-2

Navigation