Skip to main content
Log in

Simulation of Macrosegregation and Shrinkage Cavity in an Al-4.5 Wt Pct Cu Ingot Using a Four-Phase Model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A four-phase dendritic solidification model is employed to calculate the formation of macrosegregation, as-cast structure, and shrinkage cavity of Al-4.5 wt pct Cu ingot. This model couples phenomena of thermal–solutal buoyancy, crystals sedimentation, shrinkage formation, heat transfer, nucleation and growth of equiaxed grains, and columnar-to-equiaxed transition. An additional air phase is introduced to feed the shrinkage cavity during the solidification. A laboratory scale ingot with Al-4.5 wt pct Cu is fabricated for the verification of the numerical simulation results. The predicted macrosegregation, characteristics of shrinkage cavity, and as-cast structure have a good agreement with the corresponding experimental results. Furthermore, various initial mold temperatures are investigated using this numerical model. It indicates that the initial mold temperature plays an important role in the macrosegregation formation by changing the solidification sequence. The higher the initial mold temperature is, the severer the macrosegregation that will occur. Meanwhile, the higher initial mold temperature is beneficial for the growth of equiaxed grains, which results in the final as-cast structures and an increased depth of shrinkage cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c 0 :

Initial concentration (wt pct)

ρ l, ρ s, ρ c, ρ a :

Density (kg m−3)

C ls, C lc :

Species exchange (kg m−3 s−1)

D l :

Diffusion coefficient (m2 s−1)

f l, f s, f env, f c, f a :

Volume fraction (1)

\( \overrightarrow {{{{g}}_{{{l}}} }} ,\;\overrightarrow {{{{g}}_{{{s}}} }} ,\;\overrightarrow {{{{g}}_{{{a}}} }} \) :

Reduced gravity (m s−2)

H*, \( H_{\text{la}}^{*} ,\;H_{\text{sa}}^{*} ,\;H_{\text{ca}}^{*} \) :

Volume heat-transfer coefficient (W m−3 K−1)

Δh f :

Latent heat (J kg−1)

k l, k s, k c, k a :

Thermal conductivity (W m−1 K−1)

m :

Slope of the liquidus in phase diagram (K)

n :

Grain number density (m−3)

Q ls, Q lc, Q la, Q cs, Q ca, Q sa :

Energy transfer (J m−3 s−1)

S env :

Surface area concentration of envelope (m−1)

\( \dot{T} \) :

Cooling rate (k s−1)

\( \overrightarrow {{{{u}}_{{{l}}} }} ,\;\overrightarrow {{{{u}}_{{{s}}} }} ,\;\overrightarrow {{{{u}}_{{{a}}} }} \) :

Velocity (m s−1)

v Rc :

Columnar growth speed in radius direction (m s−1)

v tip :

Dendrite tip velocity (m s−1)

Γenv :

Envelope transfer rate (kg m−3 s−1)

β T :

Thermal expansion coefficient (k−1)

β c :

Solutal expansion coefficient (wt pct−1)

c l, c s, c c :

Species concentration (wt pct)

c mix :

Mix concentration (wt pct)

c p, c p_a :

Specific heat (J kg−1 K−1)

d s, d env :

Diameter of solid and envelope (m)

G :

Temperature gradient (K m−1)

H :

Heat-transfer coefficient (W m−2 K−1)

h l, h s, h c, h a :

Enthalpy (J kg−1)

k :

Solute partitioning coefficient (1)

M ls, M lc :

Net mass-transfer rate (kg m−3 s−1)

N e :

Grain production rate by nucleation (m−3 s−1)

p :

Pressure (N m−2)

S s :

Surface area concentration of solid phase (m−1)

T :

Temperature (K)

μ l :

Viscosity (kg m−1 s−1)

U ls, U lc, U la, U cs, U ca, U sa :

Momentum exchange rate (kg m−2 s−2)

v Rs :

Solid phase growth speed (m s−1)

β :

Solidification shrinkage (1)

λ 1 :

Primary dendrite arm spacing (m)

λ 2 :

Secondary dendrite arm spacing (m)

n max :

Maximum equiaxed grain density (m−3)

l :

Liquid phase (melt)

env :

Grain envelope

a :

Air phase

s :

Solid phase (solid skeleton)

c :

Columnar phase

References

  1. 1. A. Hultgren: Scand. J. Metall., 1973, vol. 2, pp. 217–27.

    CAS  Google Scholar 

  2. 2. Z. Duan, W. Tu, B. Shen, H. Shen, and B. Liu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3597–3606.

    Article  Google Scholar 

  3. 3. T. Fujii, D.R. Poirier, and M.C. Flemings: Metall. Trans. B, 1979, vol. 10, pp. 331–39.

    Article  Google Scholar 

  4. 4. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64.

    Article  CAS  Google Scholar 

  5. 5. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2765–83.

    Article  CAS  Google Scholar 

  6. 6. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1613–31.

    Article  CAS  Google Scholar 

  7. 7. M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–31.

    Article  CAS  Google Scholar 

  8. 8. A. Ludwig, M. Wu, and A. Kharicha: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4854–67.

    Article  Google Scholar 

  9. 9. H.B. Dong and P.D. Lee: Acta Mater., 2005, vol. 53, pp. 659–68.

    Article  CAS  Google Scholar 

  10. 10. A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3673–83.

    Article  CAS  Google Scholar 

  11. 11. M. Wu, A. Fjeld, and A. Ludwig: Comput. Mater. Sci., 2010, vol. 50, pp. 32–42.

    Article  CAS  Google Scholar 

  12. 12. M.C. Flemings: Scand. J. Metall., 1976, vol. 5, pp. 1–15.

    CAS  Google Scholar 

  13. 13. M. Wu, A. Ludwig, and A. Kharicha: Appl. Math. Model., 2017, vol. 41, pp. 102–20.

    Article  Google Scholar 

  14. 14. H. Ge, F. Ren, J. Li, X. Han, M. Xia, and J. Li: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1139–50.

    Article  Google Scholar 

  15. 15. H. Ge, J. Li, X. Han, M. Xia, and J. Li: J. Mater. Process. Technol., 2016, vol. 227, pp. 308–17.

    Article  CAS  Google Scholar 

  16. 16. H. Ge, F. Ren, J. Li, Q. Hu, M. Xia, and J. Li: J. Mater. Process. Technol., 2018, vol. 252, pp. 362–69.

    Article  CAS  Google Scholar 

  17. 17. C. Beckermann and R. Viskanta: Appl. Mech. Rev., 1993, vol. 46, pp. 1–27.

    Article  Google Scholar 

  18. 18. J.A. Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247–69.

    Article  CAS  Google Scholar 

  19. 19. J. Li, M. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Transfer, 2014, vol. 72, pp. 668–79.

    Article  CAS  Google Scholar 

  20. 20. W. Kurz, B. Giovanola, and R. Trivedi: Acta Mater., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  21. 21. C.Y. Wang, S. Ahuja, C. Beckermann, and H.C. de Groh III: Metall. Mater. Trans. B, 1995, vol. 26, pp. 111–19.

    Article  CAS  Google Scholar 

  22. W.E. Steward R.B. Bird, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, New York, NY, 1960.

    Google Scholar 

  23. M. Wu, A. Kharicha, and A. Ludwig: in 14th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, H. Yasuda, ed., MCWASP, Hyogo, Japan, 2015, pp. 1–8.

  24. 24. T. Wang, M. Wu, A. Ludwig, M. Abondano, B. Pustal, and A. Bührig-Polaczek: Int. J. Cast Met. Res., 2005, vol. 18, pp. 221–28.

    Article  Google Scholar 

  25. 25. T. Wang, T. Li, Z. Cao, J. Jin, T. Grimmig, A. Bührig-Polaczek, M. Wu, and A. Ludwig: Acta Metall. Sinica, 2006, vol. 42, pp. 591–98.

    CAS  Google Scholar 

  26. 26. Marshall W. Ranz: Chem. Eng. Progr., 1952, vol. 48, pp. 141–80.

    Google Scholar 

  27. 27. F.L. Ren, J.G. Wang, H.H. Ge, J. Li, Q. Hu, H.B. Nadendla, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4453–57.

    Article  Google Scholar 

  28. 28. M. Ahmadein, M. Wu, J.H. Li, P. Schumacher, and A. Ludwig: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2895–2903.

    Article  Google Scholar 

  29. 29. M. Ahmadein, M. Wu, and A. Ludwig: J. Cryst. Growth, 2015, vol. 417, pp. 65–74.

    Article  CAS  Google Scholar 

  30. Z. Zhang: Master’s Thesis, Northeastern University, Shengyang, China, 2011.

  31. 31. J. Campbell: Castings, Butterworth Heinemann Ltd., Oxford, United Kingdom, 1991.

    Google Scholar 

  32. 32. M.C. Flemings: ISIJ Int., 2000, vol. 40, pp. 833–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the National Key R&D Program of China (Grant No. 2017YFB0305301), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1660203), the National Natural Science Foundation of China (Grant Nos. 51404152 and 51774201), and the Shanghai Pujiang Program (Grant No. 14PJ1404800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Manuscript submitted January 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Ge, H., Cai, D. et al. Simulation of Macrosegregation and Shrinkage Cavity in an Al-4.5 Wt Pct Cu Ingot Using a Four-Phase Model. Metall Mater Trans A 49, 6243–6254 (2018). https://doi.org/10.1007/s11661-018-4892-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4892-9

Navigation