Skip to main content
Log in

Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c 0 :

Initial concentration (wt pct)

c ref :

Reference concentration (wt pct)

C ls, C lc :

Species exchange (kg m−3 s−1)

D l :

Diffusion coefficient (m2 s−1)

f l, f s, f env, f c, f a :

Volume fraction (1)

\( \overrightarrow {{g_{\text{l}} }} , \overrightarrow {{g_{\text{s}} }} , \overrightarrow {{g_{\text{a}} }} \) :

Reduced gravity (m s−2)

H* :

Volume heat transfer coeff. (W m−3 °C−1)

Δh f :

Latent heat (J kg−1)

k l, k s, k c, k a :

Thermal conductivity (W m−1 °C−1)

m :

Slope of the liquidus in phase diagram (°C)

n :

Grain number density (m−3)

Q ls, Q lc, Q la, Q cs, Q ca, Q sa :

Energy transfer (J m−3 s−1)

S env :

Surface area concentration of envelope (m−1)

\( \dot{T} \) :

Cooling rate ( C s−1)

\( \overrightarrow {{u_{\text{l}} }} , \overrightarrow {{u_{\text{s}} }} , \overrightarrow {{u_{\text{a}} }} \) :

Velocity (m s−1)

v Rc :

Columnar growth speed in radius direction (m s−1)

v tip :

Dendrite tip velocity (m s−1)

\( \Upgamma_{\text{env}} \) :

Envelope transfer rate (kg m−3 s−1)

ρ l, ρ s, ρ c, ρ a :

Density (kg m−3)

c l, c s, c c :

Species concentration (wt pct)

c mix :

Mix concentration (wt pct)

c p, c p_a :

Specific heat (J kg−1 °C−1)

d s, d env :

Diameter of solid and envelop (m)

G :

Temperature gradient (°C m−1)

H :

Heat transfer coefficient (W m−2 °C−1)

h l, h s, h c, h a :

Enthalpy (J kg−1)

k :

Solute partitioning coeff. (l)

M ls, M lc :

Net mass transfer rate (kg m−3 s−1)

N e :

Grain production rate by nucleation (m−3 s−1)

p :

Pressure (N m−2)

S s :

Surface area concentration of solid phase (m−1)

T :

Temperature (°C)

t :

Time (s)

U ls, U lc, U la, U cs, U ca, U sa :

Momentum exchange rate (kg m−2 s−2)

v Rs :

Solid phase growth speed (m s−1)

β :

Solidification shrinkage (l)

λ 1 :

Columnar grain space (m)

μ l :

Viscosity (kg m−1 s−1)

l:

Liquid phase (melt)

env:

Grain envelope

a:

Air phase

s:

Solid phase (solid skeleton)

c:

Columnar phase

References

  1. Axel Hultgren: Scand. J. Metall., 1973, vol. 2, pp. 217–27.

    Google Scholar 

  2. J. Li, M. Wu, A. Ludwig and A. Kharicha: Int. J. Heat Mass Tranf., 2014, vol. 72, pp. 668–79.

    Article  Google Scholar 

  3. Li D., Chen X., Fu P., Ma X., Liu H., Chen Y., Cao Y., Luan Y. and Li Y.: Nat. Commun., 2014, 5:5572.

    Article  Google Scholar 

  4. B. Sang, X. Kang and D. Li: J. Mater. Process. Technol., 2010, vol. 210, pp. 703–11.

    Article  Google Scholar 

  5. T. Fujii, D. R. Poirier and M. C. Flemings: Metall. Trans. B, 1979, vol. 10B, pp. 331–39.

    Article  Google Scholar 

  6. C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64.

    Article  Google Scholar 

  7. H. Combeau, M. Založnik, S. Hans and P. E. Richy: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 289–304.

    Article  Google Scholar 

  8. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1613–31.

    Article  Google Scholar 

  9. M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–31.

    Article  Google Scholar 

  10. E. J. Pickering: ISIJ Int., 2013, vol. 53, pp. 935–49.

    Article  Google Scholar 

  11. A. Ludwig, M. Wu and A. Kharicha: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4854–67.

    Article  Google Scholar 

  12. T. Carozzani, C. A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, Y. Fautrelle: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 873–87.

    Article  Google Scholar 

  13. S. Karagadde, L. Yuan, N. Shevchenko, S. Eckert, P. D. Lee: Acta Mater., 2014, vol. 79, pp. 168–80.

    Article  Google Scholar 

  14. W. S. Li, H. F. Shen and B. C. Liu: Int. J. Min. Met. Mater., 2012, vol. 19, pp. 787–94.

    Article  Google Scholar 

  15. D.M. Stefanescu: in Shape Casting—The John Campbell Symposium—TMS 2005 Annual Meeting, M. Tiryakioglu and P. N. Crepeau, eds., TMS, San Francisco, CA, 2005, pp. 295–304.

  16. E. Niyama, T. Uchida, M. Morikawa, and S. Saito: AFS Cast Met. Res. J., 1982, vol. V7, pp. 52–63.

  17. K. A. Pericleous, M. Cross, G. Moran, P. Chow and K. S. Chan: Adv. Comput. Math., 1996, vol. 6, pp. 295–308.

    Article  Google Scholar 

  18. S. Bounds, G. Moran, K. Pericleous, M. Cross and T. N. Croft: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 515–27.

    Article  Google Scholar 

  19. T. Wang, M. Wu, A. Ludwig, M. Abondano, B. Pustal and A. Bührig-Polaczek: Int. J. Cast Met. Res., 2005, vol. 18, pp. 221–28.

    Article  Google Scholar 

  20. S. L. Zhang, D. R. Johnson and M. J. M. Krane: Int. J. Cast Met. Res., 2015, vol. 28, pp. 28–38.

    Article  Google Scholar 

  21. S. Zhang, J. Yanke, D. R. Johnson and M. J. M. Krane: Int. J. Numer. Methods H., 2014, vol. 24, pp. 468–82.

    Article  Google Scholar 

  22. K. D. Carlson and C. Beckermann: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 163–75.

    Article  Google Scholar 

  23. M.C. Flemings: Scand. J. Metall., 1975, vol. 5, pp. 1–5.

    Google Scholar 

  24. M. Wu, A. Kharicha, and A. Ludwig: in 14th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, H. Yasuda, ed., MCWASP, Hyogo, Japan, 2015, pp. 1–8.

  25. H. Ge, J. Li, X. Han, M. Xia and J. Li: J. Mater. Process. Technol., 2016, vol. 227, pp. 308–17.

    Article  Google Scholar 

  26. C. Beckermann and R. Viskanta: Appl. Mech. Rev., 1993, vol. 46, pp. 1–27.

    Article  Google Scholar 

  27. B. Appolaire, H. Combeau and G. Lesoult: Mater. Sci. Eng. A, 2008, vol. 487, pp. 33–45.

    Article  Google Scholar 

  28. J. A. Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247–69.

    Article  Google Scholar 

  29. W. Kurz, B. Giovanola and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  Google Scholar 

  30. C. Y. Wang, S. Ahuja, C. Beckermann, and H. C. de Groh III: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 111–19.

  31. W.E. Steward, R.B. Bird, and E.N. Lightfoot: Transport Phenomena, Wiley, New York, 1960.

  32. Marshall W., Ranz W.: Chem. Eng. Prog., 1952, vol. 48, pp. 141–80.

    Google Scholar 

  33. J.Z. Wu J.Pang, C.S. Dong, and Y.H. Xu: Altas of Large Castings and Forgings Defects, Mechanical Industry Press, Beijing, 1990, pp. 17–33.

  34. J. Li, M. Wu, J. Hao, A. Kharicha and A. Ludwig: Comput. Mater. Sci., 2012, vol. 55, pp. 419–29.

    Article  Google Scholar 

  35. N. A. Shah and J. J. Moore: Int. Mater. Rev., 1983, vol. 28, pp. 336–56.

    Article  Google Scholar 

  36. Y. F. Cao, Y. Chen and D. Z. Li: Acta Mater., 2016, vol. 107, pp. 325–36.

    Article  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the National Key Research and Development Plan (No. 2016YFB0701204), National Natural Science Foundation of China (Grant Nos. 51404152, 51171115, 51305216), Shanghai Pujiang Program (Grant No. 14PJ1404800), Shanghai International Cooperation Project (Grant No. 14140711000), and National Basic Research Program of China under contract No. 2011CB012900, Joint Funds of the National Natural Science Foundation of China (No. U1660203). The authors H. Ge and J. Li would like to thank Dr. Jiehua Li from the University of Leoben, Leoben, Austria for discussion on the current manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Manuscript submitted May 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Ren, F., Li, J. et al. Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot. Metall Mater Trans A 48, 1139–1150 (2017). https://doi.org/10.1007/s11661-016-3910-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3910-z

Keywords

Navigation