Skip to main content
Log in

An Overview of the Cyclic Partial Austenite-Ferrite Transformation Concept and Its Potential

  • Symposium: PTM 2015: Solid-Solid Phase Transformations in Inorganic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Over the past decades, the mechanism of interface migration during the austenite-ferrite transformation in steels has attracted significant attention from physical metallurgists. There are two challenging research questions in this field: (i) What is the effect of (substitutional) alloying elements on migrating interfaces? and (ii) How to accurately determine the value of interface mobility?. Recently, a cyclic partial phase transformation approach has been proposed to study interface migration, and new insights into the above two questions have been provided. An overview of the cyclic partial phase transformation concept is given, and pathways for future research are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Hillert: The Growth of Ferrite, Bainite and Martensite. Internal report, Royal Institute of Technology, 1960.

  2. [2] Enomoto M, Aaronson HI: Metall Trans A, 1987, vol. 18, pp.1547-1557

    Article  Google Scholar 

  3. [3] Krielaart GP, Sietsma J, van der Zwaag S: Mater Sci Eng A, 1997, vol. 237, pp. 216-223.

    Article  Google Scholar 

  4. [4] Oi K, Lux C, Purdy GR: Acta Mater, 2000, vol. 48, pp. 2147-2155.

    Article  Google Scholar 

  5. [5] Loginova I, Odqvist J, Amberg G, Ågren J: Acta Mater, 2003, vol. 51, pp.1327-1339.

    Article  Google Scholar 

  6. [6] Liu YC, Sommer F, Mittemeijer EJ: Acta Mater, 2003, vol. 51, pp.507–519

    Article  Google Scholar 

  7. [7] Militzer M, Mecozzi MG, Sietsma J, van der Zwaag S: Acta Mater, 2006, vol. 54, pp.3961-3972.

    Article  Google Scholar 

  8. [8] Zurob HS, Hutchinson CR, Beche A, Purdy GR, Bréchet Y: Acta Mater, 2008, vol. 56, pp.2203-2211.

    Article  Google Scholar 

  9. [9] Zhu K, Chen H, Masse JP, Bouaziz O, Gachet G: Acta Mater, 2013, vol. 61, pp.6025-6036

    Article  Google Scholar 

  10. [10] Chen H, Liu YC, Yan ZS, Li YL, Zhang LF: Appl Phys A, 2010, vol. 98, pp.211-217.

    Article  Google Scholar 

  11. [11] Liu Z, Yang ZG, Li Z, Liu Z, Zhang C: Acta Metal Sinica, 2010, vol. 46, pp. 390-395.

    Article  Google Scholar 

  12. [12] Gouné M, Danoix F, Ågren J, Bréchet Y, Hutchinson C, Militzer M, Purdy G, van der Zwaag S, Zurob H: Mater Sci Eng R: Reports, 2015, vol. 92, pp.1-38.

    Article  Google Scholar 

  13. [13] Aaronson HI, Enomoto M, Lee JK: Mechanisms of Diffusional Phase Transformations in Metals and Alloys, Taylor & Francis Group, New York, 2010.

    Book  Google Scholar 

  14. Pereloma E, Edmonds D: Phase Transformation in Steels, Woodhead Publishing, Cambridge (2012).

    Book  Google Scholar 

  15. [15] Sietsma J, van der Zwaag S: Acta Mater, 2004, vol. 52, pp. 4143-4152.

    Article  Google Scholar 

  16. [16] Chen H, van der Zwaag S: Acta Mater, 2014, vol.72, pp. 1-12.

    Article  Google Scholar 

  17. [17] Purdy G, Ågren J, Borgenstam A, Bréchet Y, Enomoto M, Furuhara T, Gamsjäger E, Gouné M, Hillert M, Hutchinson C, Militzer M, Zurob H: Metall Mater Trans A., 2011, vol 42A, pp. 3703-3718.

    Article  Google Scholar 

  18. [18] Zener C: J Appl Phys, 1949, vol. 20, pp. 950-953.

    Article  Google Scholar 

  19. [19] Kirkaldy JS: Can J Phys, 1958, vol.36, pp. 907-916.

    Article  Google Scholar 

  20. [20]Coates DE: Metallurgical Transactions, 1972, vol. 3, pp. 1203-1212.

    Article  Google Scholar 

  21. M. Hillert: Introduction to paraequilibrium, Internal report, Swedish Institute of Metals Research, Stockholm, 1953.

  22. [22] Hultgren A: Trans. ASM., 1947, vol. 39, pp. 915-1005.

    Google Scholar 

  23. [23] Cahn JW: Acta Metall, 1962, vol.10, pp. 789-798.

    Article  Google Scholar 

  24. [24] Hillert M, Sundman B: Acta Metall, 1976, vol. 24, pp. 731-743.

    Article  Google Scholar 

  25. [25] Purdy GR, Bréchet Y: Acta Metall, 1995, vol. 43, pp. 3763-3774.

    Article  Google Scholar 

  26. [26] Enomoto M: Acta Mater, 1999, vol. 47, pp. 3533-3540.

    Article  Google Scholar 

  27. [27] Odqvist J, Hillert M, Ågren J: Acta Mater, 2002, vol. 50, pp. 3211-3225.

    Article  Google Scholar 

  28. [28] Zurob HS, Panahi D, Hutchinson C, Bréchet Y, Purdy G: Metall. Mater. Trans. A, 2013, vol. 44, pp.3456-3471.

    Article  Google Scholar 

  29. [29] Chen H, Borgenstam A, Odqvist J, Zuazo I, Ågren J, van der Zwaag S: Acta Mater, 2013, vol. 61, pp 4512-4523.

    Article  Google Scholar 

  30. [30] Guo H, Enomoto M, Aaronson H: Metall. Mater. Trans. A, 2006, vol. 37A, pp.1721-1729.

    Article  Google Scholar 

  31. [31] Chen H, Xu W, Goune M, van der Zwaag S: Phil Mag lett, 2012, vol. 92, pp. 547-555.

    Article  Google Scholar 

  32. [32] Liu ZQ, Miyamoto G, Yang ZG, Furuhara T: Acta Mater, 2013, vol. 61, pp. 3120-3129.

    Article  Google Scholar 

  33. [33] Beche A, Zurob HS, Hutchinson CR: Mater Trans A, 2007, vol. 38A, pp. 2950-2955.

    Article  Google Scholar 

  34. [34] Zurob HS, Hutchinson CR, Bréchet Y, Seyedrezai H, Purdy GR: Acta Mater, 2009, vol. 57, pp.2781–2792.

    Article  Google Scholar 

  35. [35] Hutchinson C, Fuchsmann A, Zurob H, Bréchet Y: Scripta Mater, 2004, vol. 50, pp. 285-289.

    Article  Google Scholar 

  36. [36] Krielaart GP, van der Zwaag S: Mater Sci Technol, 1998, vol.14, pp.10-18.

    Article  Google Scholar 

  37. [37] Wits JJ, Kop TA, van Leeuwen Y, Seitsma J, van der Zwaag S: Mater Sci Eng A, 2000, vol. 283, pp.234-241.

    Article  Google Scholar 

  38. [38] Vooijs S. I., van Leeuwen Y, Sietsma J, van der Zwaag S: Metall Mater Trans A, 2000, vol. 31, pp. 379-385.

    Article  Google Scholar 

  39. [39] Liu YC, Sommer F, Mittemeijer EJ: Philos Mag, 2004, vol. 84, pp.1853-1876.

    Article  Google Scholar 

  40. [40] Liu YC, Sommer F, Mittemeijer EJ: Acta Mater, 2004, vol.52, pp.2549-2560.

    Article  Google Scholar 

  41. [41] Hillert M, Höglund L: Scripta Mater, 2006, vol. 54, pp. 1259-1263.

    Article  Google Scholar 

  42. [42] Chen H, van der Zwaag S: Comp Mater Sci, 2010, vol. 49, pp.801-813.

    Article  Google Scholar 

  43. [43] Chen H, Appolaire B, van der Zwaag S: Acta Mater, 2011, vol. 59, pp. 6751-6760.

    Article  Google Scholar 

  44. [44] Chen H, Goune M, van der Zwaag S: Comp Mater Sci, 2012, vol. 55, pp. 34-43.

    Article  Google Scholar 

  45. [45] Chen H, Kuziak R, van der Zwaag S: Metall Mater Trans A, 2013, vol. 44, pp.5617-5621.

    Article  Google Scholar 

  46. [46] Chen H, van der Zwaag S: Acta Mater, 2013, vol. 61, pp.1338-1349.

    Article  Google Scholar 

  47. [47] Chen H, Gamsjäger E, Schider S, Khanbareh H, van der Zwaag S: Acta Mater, 2013, vol. 61, pp. 2414-2424.

    Article  Google Scholar 

  48. [48] van Dijk NH, te Velthuis SGE, Rekveldt MT, Sietsma, J, van der Zwaag, S; Physica B 1999, vol 267-68, pp 88-91

    Article  Google Scholar 

  49. S.G.E. te Velthuis: PhD thesis TU Delft, 1997

  50. [50] Chen H, van der Zwaag S: Phil Mag Lett, 2012, vol. 92, pp. 86-92.

    Article  Google Scholar 

  51. [51] Gamsjäger E, Chen H, van der Zwaag S: Comp Mater Sci, 2014, vol. 83, pp. 92-100.

    Article  Google Scholar 

  52. [52] Chen H, Zhu K, Zhao L, van der Zwaag S: Acta Mater, 2013, vol. 61, pp. 5458-5468.

    Article  Google Scholar 

  53. [53] Mecozzi MG, Sietsma J, Van Der Zwaag S, Apel M, Schaffnit P, Steinbach I: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2327-2340.

    Article  Google Scholar 

  54. [54] Huang CJ, Browne CJ, McFadden S: Acta Mater, 2006, vol. 54, pp.11-21.

    Article  Google Scholar 

  55. [56] Mecozzi MG, Sietsma J, van der Zwaag S: Acta Mater, 2006, vol. 54, pp. 1431-1440.

    Article  Google Scholar 

  56. [57] Mecozzi MG, Militzer M, Sietsma J, van der Zwaag S: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1237-1247.

    Article  Google Scholar 

  57. [58] Militzer M: Current opinion in solid state and materials science, 2011, vol. 15, pp.106-115.

    Article  Google Scholar 

  58. MICRESS, Software developed in ACCESS is an independent research center associated with the Technical University of Aachen.

  59. M. Apel, G. Laschet, and B. Böttger: Virtual Cyclic Phase Transformation Dilatometer Experiments for Fe-Mn-C by Means of Phase Field Simulations, ALEMI 2013, Delft, The Netherlands.

  60. [61]Kim SG, Kim WT, Suzuki T: Physical Review E, 1999, vol. 60, pp. 7186-7197.

    Article  Google Scholar 

  61. B. Appolaire: Current status of phase field applied to cyclic experiments in Fe-C-Mn, Private Communication.

  62. [63] Steinbach I, Zhang L, Plapp M: Acta Mater, 2012, vol. 60, pp. 2689-2701.

    Article  Google Scholar 

  63. M. Segawa, A. Yamanaka and S. Nomoto: Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials, 2015, pp. 935–941.

  64. [65] Zhu B, Chen H, Militzer M: Compt Mater Sci, 2015, vol. 108, pp. 333-341.

    Article  Google Scholar 

  65. [66] Qiu C, Zurob HS, Panahi D, Brechet YJM, Purdy G, Hutchinson CR: Acta Mater, 2015, vol. 86, pp. 286-294.

    Article  Google Scholar 

  66. Offerman S. E., van Dijk N.H., Sietsma J, Lauridsen EM, Margulies L, Grigull S, Poulsen HF, van der Zwaag S: Acta Mater, 2004, vol 52, pp 4757-4766.

    Article  Google Scholar 

Download references

Acknowledgments

H. Chen acknowledges financial support from National Young 1000-Talents Program (D1101073) and the National Natural Science Foundation of China (51501099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Manuscript submitted December 13, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., van der Zwaag, S. An Overview of the Cyclic Partial Austenite-Ferrite Transformation Concept and Its Potential. Metall Mater Trans A 48, 2720–2729 (2017). https://doi.org/10.1007/s11661-016-3826-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3826-7

Keywords

Navigation