Skip to main content
Log in

The Deformation Behavior Analysis and Mechanical Modeling of Step/Intercritical Quenching and Partitioning-Treated Multiphase Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two types of multiphase steels containing blocky or fine martensite have been used to study the phase interaction and the TRIP effect. These steels were obtained by step-quenching and partitioning (S-QP820) or intercritical-quenching and partitioning (I-QP800 & I-QP820). The retained austenite (RA) in S-QP820 specimen containing blocky martensite transformed too early to prevent the local failure at high strain due to the local strain concentration. In contrast, plentiful RA in I-QP800 specimen containing finely dispersed martensite transformed uniformly at high strain, which led to optimized strength and elongation. By applying a coordinate conversion method to the microhardness test, the load partitioning between ferrite and partitioned martensite was proved to follow the linear mixture law. The mechanical behavior of multiphase S-QP820 steel can be modeled based on the Mecking–Kocks theory, Bouquerel’s spherical assumption, and Gladman-type mixture law. Finally, the transformation-induced martensite hardening effect has been studied on a bake-hardened specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. K. Matlock and J. G. Speer, In Microstructure and Texture in Steels, (Springer: Berlin, 2009), pp 185-205.

    Book  Google Scholar 

  2. 2. B. Fu, W. Yang, Y. Wang, L. Li, Z. Sun and Y. Ren, Acta Mater., 2014, vol. 76, pp. 342-354.

    Article  Google Scholar 

  3. 3. P. J. Jacques, Q. Furnémont, F. Lani, T. Pardoen and F. Delannay, Acta Mater., 2007, vol. 55, pp. 3681-3693.

    Article  Google Scholar 

  4. 4. J. Speer, D. K. Matlock, B. C. De Cooman and J. G. Schroth, Acta Mater., 2003, vol. 51, pp. 2611-2622.

    Article  Google Scholar 

  5. 5. A. J. Clarke, J. G. Speer, D. K. Matlock, F. C. Rizzo, D. V. Edmonds and M. J. Santofimia, Scripta Mater., 2009, vol. 61, pp. 149-152.

    Article  Google Scholar 

  6. 6. M. J. Santofimia, L. Zhao, R. Petrov and J. Sietsma, Mater. Charact., 2008, vol. 59, pp. 1758-1764.

    Article  Google Scholar 

  7. 7. E. De Moor, S. Lacroix, A. Clarke, J. Penning and J. Speer, Metall. Mater. Trans. A, 2008, vol. 39, pp. 2586-2595.

    Article  Google Scholar 

  8. 8. J. Kang, Y. Ososkov, J. D. Embury and D. S. Wilkinson, Scripta Mater., 2007, vol. 56, pp. 999-1002.

    Article  Google Scholar 

  9. 9. H. Shen, T. Lei and J. Liu, Mater. Sci. Tech., 1986, vol. 2, pp. 28-33.

    Article  Google Scholar 

  10. 10. M. Mazinani and W. Poole, Metall. Mater. Trans. A, 2007, vol. 38, pp. 328-339.

    Article  Google Scholar 

  11. 11. Y. Su and J. Gurland, Mater. Sci. Eng., 1987, vol. 95, pp. 151-165.

    Article  Google Scholar 

  12. 12. A. Rizk and D. Bourell, Scripta Metall., 1982, vol. 16, pp. 1321-1324.

    Article  Google Scholar 

  13. 13. Y. Tomota, K. Kuroki, T. Mori and I. Tamura, Mater. Sci. Eng., 1976, vol. 24, pp. 85-94.

    Article  Google Scholar 

  14. 14. S. Mileiko, J. Mater. Sci., 1969, vol. 4, pp. 974-977.

    Article  Google Scholar 

  15. 15. Z. Jiang, Z. Guan and J. Lian, Mat. Sci. Eng. A, 1995, vol. 190, pp. 55-64.

    Article  Google Scholar 

  16. 16. R. Davies, Metall. Mater. Trans. A, 1978, vol. 9, pp. 451-455.

    Article  Google Scholar 

  17. 17. R. Davies, Metall. Mater. Trans. A, 1978, vol. 9, pp. 671-679.

    Article  Google Scholar 

  18. 18. R. Grange, C. Hribal and L. Porter, Metall. Trans. A, 1977, vol. 8, pp. 1775-1785.

    Article  Google Scholar 

  19. 19. A. Bag, K. Ray and E. Dwarakadasa, Metall. Mater. Trans. A, 1999, vol. 30, pp. 1193-1202.

    Article  Google Scholar 

  20. 20. N. C. Goel, S. Sangal and K. Tangri, Metall. Trans. A, 1985, vol. 16, pp. 2013-2021.

    Article  Google Scholar 

  21. 21. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai and Y. Morii, Acta Mater., 2004, vol. 52, pp. 5737-5745.

    Article  Google Scholar 

  22. 22. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong and W. Cao, Scripta Mater., 2010, vol. 63, pp. 815-818.

    Article  Google Scholar 

  23. 23. C. Kim, Metall. Trans. A, 1988, vol. 19, pp. 1263-1268.

    Article  Google Scholar 

  24. 24. D. Bourell and A. Rizk, Acta Metall., 1983, vol. 31, pp. 609-17.

    Article  Google Scholar 

  25. 25. P. Jacques, Curr. Opin. Solid. St. M., 2004, vol. 8, pp. 259-265.

    Article  Google Scholar 

  26. 26. R. J. Moat, S. Y. Zhang, J. Kelleher, A. F. Mark, T. Mori and P. J. Withers, Acta Mater., 2012, vol. 60, pp. 6931-6939.

    Article  Google Scholar 

  27. 27. H. S. Zhao, X. Zhu, W. Li, X. J. Jin, L. Wang, H. Jiao and D. M. Jiang, Mater. Sci. Tech., 2014, vol. 30, pp. 1008-1013.

    Article  Google Scholar 

  28. 28. L. Zhao, N. Van Dijk, E. Brück, J. Sietsma and S. Van der Zwaag, Mat. Sci. Eng. A, 2001, vol. 313, pp. 145-152.

    Article  Google Scholar 

  29. 29. H. Zhao, W. Li, X. Zhu, X. Lu, L. Wang, S. Zhou and X. Jin, Mat. Sci. Eng. A, 2016, vol. 649, pp. 18-26.

    Article  Google Scholar 

  30. H. Zhao, W. Li, X. Zhu, X. Lu, L. Wang, S. Zhou and X. Jin: Mater. Sci. Technol. 2016, pp. 1–6.

  31. 31. A. K. De, J. G. Speer and D. K. Matlock, Adv. Mater. Processes, 2003, vol. 161, pp. 27-30.

    Google Scholar 

  32. 32. D. Korzekwa, D. Matlock and G. Krauss, Metall. Trans. A, 1984, vol. 15, pp. 1221-1228.

    Article  Google Scholar 

  33. 33. S. Sankaran, S. Sangal and K. Padmanabhan, Mater. Sci. Tech., 2005, vol. 21, pp. 1152-1160.

    Article  Google Scholar 

  34. 34. M. Umemoto, K. Tsuchiya, Z. Liu and S. Sugimoto, Metall. Mater. Trans. A, 2000, vol. 31, pp. 1785-1794.

    Article  Google Scholar 

  35. 35. D. Das and P. P. Chattopadhyay, J. Mater. Sci., 2009, vol. 44, pp. 2957-2965.

    Article  Google Scholar 

  36. 36. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Mat. Sci. Eng. A, 2010, vol. 527, pp. 2738-2746.

    Article  Google Scholar 

  37. F. Maresca, V. Kouznetsova and M. Geers, Scripta Mater., 2016, vol. 110, pp. 74-77.

    Article  Google Scholar 

  38. 38. N. Kim and G. Thomas, Metall. Trans. A, 1981, vol. 12, pp. 483-489.

    Article  Google Scholar 

  39. 39. S. Kim and S. Lee, Metall. Mater. Trans. A, 2000, vol. 31, pp. 1753-1760.

    Article  Google Scholar 

  40. G. Olson and M. Cohen, Metall. Trans. A, 1975, vol. 6, pp. 791-795.

    Article  Google Scholar 

  41. 41. S.-J. Lee, J. Mola and B. C. De Cooman, Metall. Mater. Trans. A, 2012, vol. 43, pp. 4921-4925.

    Article  Google Scholar 

  42. 42. J. Pešička, R. Kužel, A. Dronhofer and G. Eggeler, Acta Mater., 2003, vol. 51, pp. 4847-4862.

    Article  Google Scholar 

  43. M.A. Meyers, K.K. Chawla (2009) Mechanical behavior of materials. (Cambridge University Press: Cambridge)

    Google Scholar 

  44. 44. J. Bouquerel, K. Verbeken and B. Decooman, Acta Mater., 2006, vol. 54, pp. 1443-1456.

    Article  Google Scholar 

  45. 45. M. Delince, P. Jacques and T. Pardoen, Acta Mater., 2006, vol. 54, pp. 3395-3404.

    Article  Google Scholar 

  46. 46. W. Horvath, W. Prantl, H. Stroißnigg and E. Werner, Mat. Sci. Eng. A, 1998, vol. 256, pp. 227-236.

    Article  Google Scholar 

  47. 47. I. Gutiérrez and M. A. Altuna, Acta Mater., 2008, vol. 56, pp. 4682-4690.

    Article  Google Scholar 

  48. 48. S. Sangal, N. C. Goel and K. Tangri, Metall. Trans. A, 1985, vol. 16, pp. 2023-2029.

    Article  Google Scholar 

  49. 49. A. De, K. De Blauwe, S. Vandeputte and B. De Cooman, J. Alloy Compd., 2000, vol. 310, pp. 405-410.

    Article  Google Scholar 

  50. 50. S. Berbenni, V. Favier, X. Lemoine and M. Berveiller, Scripta Mater., 2004, vol. 51, pp. 303-308.

    Article  Google Scholar 

  51. 51. J. Zhao, A. De and B. De Cooman, Mater. Lett., 2000, vol. 44, pp. 374-378.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Industry and Information Technology of China under the project of LNG shipbuilding and National Natural Science Foundation of China Nos. 51571141 and 51201105 and U1564203.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Xuejun Jin.

Additional information

Manuscript submitted December 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, W., Wang, L. et al. The Deformation Behavior Analysis and Mechanical Modeling of Step/Intercritical Quenching and Partitioning-Treated Multiphase Steels. Metall Mater Trans A 47, 3943–3955 (2016). https://doi.org/10.1007/s11661-016-3585-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3585-5

Keywords

Navigation