Skip to main content
Log in

Tensile stress-strain analysis of single-structure steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In an effort to establish a universal model to predict the mechanical properties from processing conditions, tensile tests have been conducted of four single-structure steels, namely, ferrite, pearlite, bainite, and martensite; the data obtained were analyzed in terms of the Ludwik, Hollomon, and Swift equations to characterize their work-hardening behavior. It was found that the differential Crussard-Jaoul (C-J) analysis, based on the Ludwik equation, can describe the work-hardening behavior of these steels fairly well.

The differential C-J analysis has shown that the ferrite and pearlite steels deform with two stages of work hardening, each stage associated with a distinctive value of the work-hardening exponent n. Martensitic steels exhibit single-stage work hardening. In bainite, the behavior was found to be dependent on transformation temperature; upper and lower bainite exhibit a behavior similar to pearlitic steels and quenched martensite, respectively. This can be well understood in terms of the similarity of the corresponding microstructures.

On the basis of these results, the work-hardening behavior of single-structure steels falls into four categories, according to the n value. This classification may serve as a useful guide to predict the flow behavior of steels with a known microstructure or to judge the microstructure merely by stress-strain curves, without microstructural observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.D. Hodgson and R.K. Gibbs: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1329–38.

    CAS  Google Scholar 

  2. P.C. Campbell, E.B. Hawbolt, and J.K. Brimacombe: Metall. Trans. A, 1991, vol. 22A, p. 239.

    Google Scholar 

  3. F.B. Pickering: Towards Improved Toughness and Ductility, Climax Molybdenum Co. Symp., Kyoto, 1971, Climax Molybdenum Co., p. 9.

  4. T. Gladman, B. Holmes, and F.B. Pickering: J. Iron Steel Inst., 1970, vol. 208, pp. 172–83.

    CAS  Google Scholar 

  5. W.B. Morrison: Trans. ASM, 1966, vol. 59, pp. 824–46.

    CAS  Google Scholar 

  6. A.R. Marder and B.L. Bramfitt: Metall. Trans. A, 1976, vol. 7A, pp. 365–72.

    CAS  Google Scholar 

  7. W. Heller: Rail Steels, ASTM STP 644, ASTM, Philadelphia, PA, 1978, p. 162.

    Google Scholar 

  8. R.W.K. Honeycombe and F.B. Pickering: Metall. Trans., 1972, vol. 3, pp. 1099–1112.

    CAS  Google Scholar 

  9. P. Brozzo, G. Buzzichelli, A. Mascanzoni, and M. Mirabile: Met. Sci., 1977, vol. 11, pp. 123–29.

    Article  CAS  Google Scholar 

  10. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd., Barking, Essex, United Kingdom, 1978.

    Google Scholar 

  11. T. Kunitake: Trans. Iron Steel Inst. Jpn., 1967, vol. 7, pp. 254–62.

    CAS  Google Scholar 

  12. D.W. Smith and R.F. Hehemann: J. Iron Steel Inst., 1971, vol. 209, pp. 476–81.

    CAS  Google Scholar 

  13. P. Ludwik: Elemente der Technolnischen Mechanick, Verlag von Julius Springen, Berlin, 1909, p. 32.

    Google Scholar 

  14. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  15. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537–62.

    CAS  Google Scholar 

  16. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1. pp. 1–18.

    Article  Google Scholar 

  17. C. Crussard: Rev. Metallurgie, 1950, vol. 47, pp. 589–600.

    CAS  Google Scholar 

  18. B. Jaoul: J. Mech. Phys. Solids, 1957, vol. 5, pp. 95–114.

    Article  Google Scholar 

  19. S.N. Monteiro and R.E. Reed-Hill: Metall. Trans., 1971, vol. 2, pp. 2947–48.

    CAS  Google Scholar 

  20. D.K. Matlock, F. Zia-Ebrahimi, and G. Krauss: Deformation, Processing and Structure, ASM Materials Science Seminar, ASM, Metals Park, OH, 1982, pp. 47–87.

    Google Scholar 

  21. L.F. Ramos, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1979, vol. 10A, pp. 259–61.

    CAS  Google Scholar 

  22. M.S. Nagorka, G. Krauss, and D.K. Matlock: Mater. Sci. Eng. A, 1987, vol. 94, pp. 183–93.

    Article  CAS  Google Scholar 

  23. Y. Tomita and K. Okabayashi: Metall. Trans., 1985, vol. 16A, pp. 865–72.

    CAS  Google Scholar 

  24. Z. Jiang, J. Lian, and J. Chen: Mater. Sci. Technol., 1992, vol. 8, pp. 1075–81.

    CAS  Google Scholar 

  25. R.E. Reed-Hill, W.R. Cribb, and S.N. Monteiro: Metall. Trans., 1973, vol. 4, pp. 2665–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umemoto, M., Tsuchiya, K., Liu, Z.G. et al. Tensile stress-strain analysis of single-structure steels. Metall Mater Trans A 31, 1785–1794 (2000). https://doi.org/10.1007/s11661-006-0249-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0249-x

Keywords

Navigation