Skip to main content

Advertisement

Log in

Creep Behavior, Deformation Mechanisms, and Creep Life of Mod.9Cr-1Mo Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The creep behavior, deformation mechanisms, and the correlation between creep deformation parameters and creep life have been investigated for Mod.9Cr-1Mo steel (Gr.91, 9Cr-1Mo-VNb) by analyzing creep strain data at 723 K to 998 K (450 °C to 725 °C), 40 to 450 MPa, and t r = 11.4 to 68,755 hours in NIMS Creep Data Sheet. The time to rupture t r is reasonably correlated with the minimum creep rate \( {\dot{\varepsilon }}_{ \hbox{min} } \) and the acceleration of creep rate by strain in the acceleration region dln\( {\dot{\varepsilon }} \) /d ε, as t r = 1.5/[\( {\dot{\varepsilon }}_{ \hbox{min} } \) (dln\( {\dot{\varepsilon }} \) /d ε)], where \( {\dot{\varepsilon }}_{ \hbox{min} } \) and dln\( {\dot{\varepsilon }} \) /d ε reflect the creep behavior in the transient and acceleration regions, respectively. The \( {\dot{\varepsilon }}_{ \hbox{min} } \) is inversely proportional to the time to minimum creep rate t m, while it is proportional to the strain to minimum creep rate ε m, as \( {\dot{\varepsilon }}_{ \hbox{min} } \) = 0.54 (ε m/t m). The ε m decreases with decreasing stress, suggesting that the creep deformation in the transient region becomes localized in the vicinity of prior austenite grain boundaries with decreasing stress. The duration of acceleration region is proportional to the duration of transient region, while the dln\( {\dot{\varepsilon }} \) /d ε is inversely proportional to the ε m. The t r is also correlated with the t m, as t r = g t m, where g is a constant. The present creep life equations reasonably predict the degradation in creep rupture strength at long times. The downward deviation takes place in the t r vs \( {\dot{\varepsilon }}_{ \hbox{min} } \) curves (Monkman–Grant plot). At the same \( {\dot{\varepsilon }}_{ \hbox{min} } \), both the ε m and t m change upon the condition of t m ∝ ε m. The decrease in ε m with decreasing stress, corresponding to decreasing \( {\dot{\varepsilon }}_{ \hbox{min} } \), causes a decrease in t m, indicating the downward deviation of the t r vs \( {\dot{\varepsilon }}_{ \hbox{min} } \) curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

σ :

Stress (MPa)

ε :

Strain

\( {\dot{\varepsilon }} \) :

Creep rate (h−1)

\( {\dot{\varepsilon }}_{ \hbox{min} } \) :

Minimum creep rate (h−1)

ɛ m :

Creep strain to minimum creep rate

dln\( {\dot{\varepsilon }} \) /d ε :

Increase in creep rate by strain in acceleration region

t m :

Time to minimum creep rate (h)

t r :

Time to rupture or creep life (h)

ɛ r :

Total or rupture strain

c, c′:

Constants

g :

Constant

References

  1. F. Abe: Current Opinion in Solid State and Materials Science, 2004, vol. 8, pp.305-11.

    Article  Google Scholar 

  2. F. Abe: in Structural Alloys for Power Plants, A. Shirzadi and S. Jackson, eds., Woodhead Publishing Limited, Cambridge, 2014, pp. 250–93.

  3. T. Allen, H. Burlet, R.K. Nanstad, M. Samaras, and S. Ukai: MRS Bull., 2009, vol. 34(1), pp. 1–8.

    Article  Google Scholar 

  4. F. Abe: in Coal Power Plant Materials and Life Assessment, A. Shibli, ed., Woodhead Publishing Limited, Cambridge, 2014, pp. 3–51.

  5. F. Abe: Int. J. Press. Vessels Pip., 2008, vol. 85(1), pp. 99–107.

    Article  Google Scholar 

  6. S.R. Holdsworth and G. Merckling: Proc. of the 6th Intern. Charles Parsons Turbine Conf., 16–18 September 2003, Dublin, Ireland, 2003, pp. 411–26.

  7. G. Merckling: Int. J. Press. Vessels Pip., 2008, vol. 85, pp. 2–13.

    Article  Google Scholar 

  8. W. Bendick, L. Cipolla, J. Grabel and J. Hald: Int. J. Press. Vessels Pip., 2010, vol. 87, pp. 304–09.

    Article  Google Scholar 

  9. B. Wilshire and P.J. Scharning: Int. Mater. Rev., 2008, vol. 53, pp. 91–104.

    Article  Google Scholar 

  10. K. Kimura: Proc. of ASME 2004 Pressure Vessels & Piping Conference (PVP2005), July 17–21, 2005, Denver, CO, 2005, PVP2005-71039.

  11. H.G. Armaki, K. Maruyama, M. Yoshizawa, and M. Igarashi: Mater. Sci. Eng. A, 2008, vol. 490, pp. 66–71.

    Article  Google Scholar 

  12. F. Abe: in Creep-Resistant Steels, F. Abe, T.-U. Kern, and R. Viswanathan, eds., Woodhead Publishing Limited, Cambridge, England, 2008, pp. 3–14.

  13. F. Masuyama and N. Nishimura: Proc. of the 10th International Conference on Strength of Materials, Sendai, Japan, August 21–26, 1994, pp. 657–60.

  14. I. Nonaka: Proc. of 3rd Intern. ECCC Conf. on Creep & Fracture in High temperature Components & Life Assessment, May 5–7, 2014, Rome, Italy, 2014, Paper No. 36.

  15. M. Prager: J. Pressure Vessel Technol., 1995, vol. 117, pp. 95–103.

    Article  Google Scholar 

  16. H. Semba, B. Dyson, and M. McLean: Proc. of Intern. Conf. on Creep & Fracture in High Temperature Components, September 12–14, 2005, London, 2005, pp. 419–27.

  17. R. Lim, M. Sauzay, F. Dalle, I. Tournie, P. Bonnaillie, A. Gourgues-Lorenzon: Intern. J. Fracture, 2011, vol. 169, pp.213-28.

    Article  Google Scholar 

  18. F. Abe: Metall. Trans. A, 1995, vol. 26A, pp. 2237–46.

    Article  Google Scholar 

  19. F. Abe: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 913–25.

    Article  Google Scholar 

  20. F. Abe: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 321–32.

    Article  Google Scholar 

  21. K. Kimura, H. Kushima, and F. Abe: Proc. EPRI Intern. Conf. on Advances in Life Assessment and Optimization of Fossil Power Plants, Orlando, FL, March 11–13, 2002, pp. 1–17.

  22. K. Kimura, K. Sawada, K. Kubo and H. Kushima: ASME PVP, 2004, vol. 476, pp. 11-8.

    Google Scholar 

  23. K. Kimura, K. Sawada, and H. Kushima: ASME PVP2010, July 18–22, 2010, Bellevue, Washington, PVP2010-25297, 2004, pp. 1–10.

  24. NIMS Creep Data Sheets, Atlas of Creep Deformation Property, No. D-1, Tokyo, Tsukuba, National Institute for Materials Science, 2007.

  25. NIMS Creep Data Sheets, Atlas of Creep Deformation Property, No. D-2, Tokyo, Tsukuba, National Institute for Materials Science, 2008.

  26. R. Wu, R. Sandström, and J. Storesund: Mater. High Temp., 1994, vol. 12, pp. 277–83.

    Google Scholar 

  27. F. Abe, S. Nakazawa, H. Araki, and T. Noda: Metall. Trans. A, 1992, vol. 23A, pp. 469–77.

    Article  Google Scholar 

  28. F. Abe and S. Nakazawa: Metall. Trans. A, 1992, vol. 23A, pp. 3025–34.

    Article  Google Scholar 

  29. R. W. Evans and B. Wilshire: “Creep of Metals and Alloys”, The Institute of Metals, London, 1985, pp.114-53.

    Google Scholar 

  30. J. Cadek: “Creep in Metallic Materials”, Elsevier, Amsterdam, Oxford, New York, 1988, pp.115-59.

    Google Scholar 

  31. L. Kloc and V. Sklenicka: Materials Science and Engineering A, 1997, vol. 234-236, pp.962-5.

    Article  Google Scholar 

  32. J.C.M. Li: Acta Metall., 1963, vol. 11, pp. 1269–70.

    Article  Google Scholar 

  33. S. Yamasaki, M. Mitsuhara, K. Ikeda, S. Hata, and H. Nakashima: Tetsu-to-Hagane, 2014, vol. 100, 688–95.

    Article  Google Scholar 

  34. S. Spigarelli, L. Kloc, and P. Bontempi: Scripta Mater., 1997, vol. 37, pp. 399–404.

    Article  Google Scholar 

  35. F. Abe: Int. J. Mater. Res., 2012, vol. 103, pp. 765–73.

    Article  Google Scholar 

  36. H. Kushima, K. Kimura, and F. Abe: Tetsu-to-Hagane, 1999, vol. 85(11), pp. 841–47, in Japanese.

  37. J. Hald: Intern. J. Pressure Vessels & Piping, 2008, vol.85, pp.30-7.

    Article  Google Scholar 

  38. T. Shrestha, M. Basirat, I. Charit, G. P. Potirniche, K. K. Rink and U. Sahaym: J. Nucl. Mater., 2012, vol. 423, pp.110-9.

    Article  Google Scholar 

  39. S. Spigarelli: J. Pressure Vessels & Piping, 2013, vol. 101, pp.64-71.

    Article  Google Scholar 

  40. S. Straub, M. Meier, J. Ostermann, W. Blum: VGB Kraftw., 1993, vol. 73, pp.646-53.

    Google Scholar 

  41. F. Abe: Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 1045–48.

    Article  Google Scholar 

  42. F. Abe: Mater. Sci. Eng., 2001, vol. A319-321, pp. 770-773.

    Article  Google Scholar 

  43. E. Baba, O. Kanemaru, F. Abe, and K. Yagi: Tetsu-to-Hagane, 1995, vol. 81(8), pp. 845–50, in Japanese.

  44. K. Maruyama, K. Sawada, and J. Koike, ISIJ Int., 2001, vol. 41, pp. 641–53.

    Article  Google Scholar 

  45. K. Sawada, H. Kushima, M. Tabuchi and K. Kimura: Mater. Sci. Eng. A, 2011, vol. A528, pp.5511-8.

    Article  Google Scholar 

  46. F. Abe: Int. J. Mater. Res., 2008, vol. 99, pp. 387–94.

    Article  Google Scholar 

  47. K. Sawada, K. Kubo and F. Abe: Mater. Sci. Eng. A, 2001, vol. A319-321, pp.784-7.

    Article  Google Scholar 

  48. F. Abe and M. Tabuchi: Mater. Sci. Technol. Weld. Join., 2004, vol. 9, pp. 22–30.

    Article  Google Scholar 

  49. S. Ukai, R. Miyata, X. Wu, Y. Sugino, N. Oono, S. Hayashi, E. Maeda, T. Azuma, S. Ohtsuka, and T. Kaito: Proc. of 12th Intern. Conf. on Creep and Fracture of Eng. Mater. and Structures, May 2012, Kyoto, CD-ROM, 2012.

  50. Y. Liu, S. Tsukamoto, T. Shirane, and F. Abe: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4626–33.

    Article  Google Scholar 

  51. Y. Liu, S. Tsukamoto, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1306–14.

    Article  Google Scholar 

  52. S. Kobayashi, K. Sawada, T. Hara, H. Kushima and K. Kimura, K: Mater. Sci. Eng. A, 2014, vol. 592, pp.241-8.

    Article  Google Scholar 

  53. F. C. Monkaman and N. J. Grant: Proc. ASTM 56, 1956, pp. 593-620.

    Google Scholar 

  54. B. K. Choudhary: Mater. Sci. Eng. A, 2013, vol. A585, pp.1-9.

    Article  Google Scholar 

  55. NIMS Creep Data Sheets, No. 17B, Tokyo, Tsukuba, National Institute for Materials Science, 1994.

  56. NIMS Creep Data Sheets, No. 9B, Tokyo, Tsukuba, National Institute for Materials Science, 1990.

  57. NIMS Creep Data Sheets, No. 3B, Tokyo, Tsukuba, National Institute for Materials Science, 1986.

  58. NIMS Creep Data Sheets, No. 10B, Tokyo, Tsukuba, National Institute for Materials Science, 1998.

  59. NIMS Creep Data Sheets, No. 48A, Tokyo, Tsukuba, National Institute for Materials Science, 2012.

  60. NIMS Creep Data Sheets, No. 51A, Tokyo, Tsukuba, National Institute for Materials Science, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujio ABE.

Additional information

Manuscript submitted February 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ABE, F. Creep Behavior, Deformation Mechanisms, and Creep Life of Mod.9Cr-1Mo Steel. Metall Mater Trans A 46, 5610–5625 (2015). https://doi.org/10.1007/s11661-015-3144-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3144-5

Keywords

Navigation