Skip to main content
Log in

Short-Term Creep Data Based Long-Term Creep Life Predictability for Grade 92 Steels and Its Microstructural Basis

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Long-term creep life (5000–100,000 h) predictabilities, based on the short-term creep life data (~ 5000 h), for Grade 92 steel were investigated among major creep life prediction models, Larson–Miller parameter (LMP), normalized power law (NPL) and Wilshire models. The NPL and Wilshire models showed superior short-term creep data based long-term creep life predictabilities to the LMP model. In particular, the Wilshire model showed relatively accurate predictions (within an error range of 7%–10%), which seemed to be due to reasonable coupling of the normalized stress with the temperature-dependent rupture life term in a form of the cumulative distribution function. Both NPL and Wilshire models, calibrated by the short-term creep life data, showed a transition in creep mechanism at a similar normalized stress. Thermodynamics-based kinetic simulation (MatCalcTM) results for major precipitates (M23C6, MX and Z phases) of Grade 92 steel suggested that the creep transition is associated with coarsening of M23C6 precipitates at high temperatures (above 600 °C), which led to the degradation of the creep property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.Y. Dang, X.B. Zhao, Y. Yuan, H.F. Ying, J.T. Lu, Z. Yang, Y. Gu, Mater. High Temp. 33, 1 (2016)

    Article  Google Scholar 

  2. F.R. Larson, J. Miller, Trans ASME. 74, 765 (1952)

    Google Scholar 

  3. B. Wilshire, A.J. Battenbough, Mater. Sci. Eng., A 443, 156 (2007)

    Article  Google Scholar 

  4. M.T. Whittaker, B. Wilshire, Mater. Sci. Technol. 27, 642 (2011)

    Article  Google Scholar 

  5. B. Wilshire, P.J. Scharning, R. Hurst, Mater. Sci. Eng., A 510–511, 3 (2009)

    Article  Google Scholar 

  6. B. Wilshire, P.J. Scharning, Int. Mater. Rev. 53, 91 (2008)

    Article  Google Scholar 

  7. S.J. Williams, M.R. Bache, B. Wilshire, Mater. Sci. Technol. 26, 1332 (2010)

    Article  Google Scholar 

  8. B. Wilshire, P.J. Scharning, J. Mater. Sci. 43, 3992 (2008)

    Article  Google Scholar 

  9. B. Wilshire, M.T. Whittaker, Acta Mater. 57, 4115 (2009)

    Article  Google Scholar 

  10. B. Wilshire, P.J. Scharning, Scr. Mater. 56, 701 (2007)

    Article  Google Scholar 

  11. M.T. Whittaker, B. Wilshire, Metall. Mater. Trans. A 44, 136 (2013)

    Article  Google Scholar 

  12. M.T. Whittaker, B. Wilshire, Mater. Sci. Eng., A 527, 4932 (2010)

    Article  Google Scholar 

  13. M.T. Whittaker, W.J. Harrison, Mater. High Temp. 31, 233 (2014)

    Article  Google Scholar 

  14. Q. Wang, M. Yang, X.L. Song, J. Jia, Z.D. Xiang, Metall. Mater. Trans. A 47, 3479 (2016)

    Article  Google Scholar 

  15. M. Yang, Q. Wang, X.L. Song, J. Jia, Z.D. Xiang, Int. J. Mater. Res. 107, 133 (2016)

    Article  Google Scholar 

  16. K. Kimura, Y. Toda, H. Kushima, K. Sawada, Int. J. Press. Vessel. Pip. 87, 282 (2010)

    Article  Google Scholar 

  17. S. S. Manson and A. M. Haferd, NASA-TN-2890 (1953)

  18. R.L. Orr, O.D. Sherby, J.E. Dorn, Trans ASM. 46, 113 (1954)

    Google Scholar 

  19. V. Cedro, C. Garcia, M. Render, Materials (Basel). 11, 1585 (2018)

    Article  Google Scholar 

  20. H.P. Yao, Y.R. Zhao, X.L. Song, J. Jia, Z.D. Xiang, Eur. J. Mech. A/Solids 73, 57 (2019)

    Article  Google Scholar 

  21. Y. Zhao, H. Yao, X. Song, J. Jia, Z. Xiang, Met. Mater. Int. 24, 51 (2018)

    Article  Google Scholar 

  22. E. Isaac Samuel, B.K. Choudhary, D.P. Rao Palaparti, M.D. Mathew, Procedia Eng. 55, 64 (2013)

    Article  Google Scholar 

  23. P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, A. Czyrska-Filemonowicz, Acta Mater. 45, 4901 (1997)

    Article  Google Scholar 

  24. H. Nickel, P.J. Ennis, W.J. Quadakkers, Miner. Process. Extr. Metall. Rev. 22, 181 (2001)

    Article  Google Scholar 

  25. NIMS creep data sheet No.48A (2012)

  26. M. Tamura, F. Abe, K. Shiba, H. Sakasegawa, H. Tanigawa, Metall. Mater. Trans. A 44, 2645 (2013)

    Article  Google Scholar 

  27. T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, M.D. Mathew, Mater. Sci. Eng., A 591, 111 (2014)

    Article  Google Scholar 

  28. J. Hald, Int. J. Press. Vessel. Pip. 85, 30 (2008)

    Article  Google Scholar 

  29. T. Sakthivel, S.P. Selvi, P. Parameswaran, K. Laha, Mater. High Temp. 33, 33 (2016)

    Article  Google Scholar 

  30. J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik, Mater. Sci. Eng., A 385, 166 (2004)

    Google Scholar 

  31. E. Kozeschnik, J. Svoboda, F.D. Fischer, CALPHAD. 28, 379 (2004)

    Article  Google Scholar 

  32. http://www.matcalc.com

  33. S.H. Song, R.G. Faulkner, P.E.J. Flewitt, Mater. Sci. Eng., A 281, 23 (2000)

    Article  Google Scholar 

  34. J.H. Shim, E. Kozeschnik, W.S. Jung, S.C. Lee, D.I. Kim, J.Y. Suh, Y.S. Lee, Y.W. Cho, CALPHAD. 34, 105 (2010)

    Article  Google Scholar 

  35. Z. Abdallah, V. Gray, M. Whittaker, K. Perkins, Materials (Basel). 7, 3371 (2014)

    Article  Google Scholar 

  36. J. Cadek, Creep in metallic materials (Elsevier, New York, 1988)

    Google Scholar 

  37. N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, D.C. Dunand, Acta Mater. 71, 89 (2014)

    Article  Google Scholar 

  38. T. Sakthivel, S.P. Selvi, K. Laha, Mater. Sci. Eng., A 640, 61 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the R&D Convergence Program of National Research Council of Science and Technology (Grant No. CAP-16-08-KITECH) of Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Suk Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.C., Shim, JH., Jung, WS. et al. Short-Term Creep Data Based Long-Term Creep Life Predictability for Grade 92 Steels and Its Microstructural Basis. Met. Mater. Int. 25, 713–722 (2019). https://doi.org/10.1007/s12540-018-00214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00214-x

Keywords

Navigation