Skip to main content
Log in

Interaction Between Recovery, Recrystallization, and NbC Strain-Induced Precipitation in High-Mn Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The interaction between recovery, recrystallization, and strain-induced precipitation in two high-Mn steels, one of them microalloyed with Nb (0.1 pct) was investigated using mechanical testing and advanced microscopy techniques. Double-hit torsion tests were carried out in the 1373 K to 1173 K (1100 °C to 900 °C) temperature range in order to characterize the fractional softening behavior. Quenched specimens were analyzed using electron backscatter diffraction and transmission electron microscopy to determine the recrystallized fraction, the precipitation state, and the austenite microstructure evolution. At the highest temperature, 1373 K (1100 °C), similar softening kinetics were found in both steels. However, at temperatures lower than 1273 K (1000 °C) for the Nb steel, strain-induced precipitation was observed to take place resulting in significant softening retardation. For the base steel at all the temperatures investigated, and for the Nb steel in the absence of strain-induced precipitation, the mechanical softening corresponded well with the recrystallized fraction. However, when strain-induced precipitation took place, a major deviation was observed denoting a significant contribution of recovery to the fractional softening. Within the deformed grains, a substructure consisting of “subgrain bands” or microbands was developed. The precipitates were found mainly on the elongated subgrain boundaries, or at dislocations within the subgrains. This configuration was maintained after the migration of the recrystallization front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B.C. DeCooman, K. Chin, J. Kim: in New trends and Developments in Automotive System Engineering, M. Chiaberge, ed., InTech, Rijeka, Croatia, 2011, pp. 101–28.

  2. O. Bouzaiz, S. Allain, C.P. Scott and P. Cugy: Curr. Opin. Solid St. M., 2011, vol. 15, pp. 141-68.

    Article  Google Scholar 

  3. C. Scott, S. Allain, M. Faral and N. Guelton: La Revue de Metallurgie CIT, 2006, vol. 103, pp. 293-302.

    Article  Google Scholar 

  4. G. Frommeyer, U. Brux and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.

    Article  Google Scholar 

  5. C. Scott, B. Remy, J.L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard and C. Curfs: Int. J. Mat. Res., 2011, vol. 102, pp. 538-49.

    Article  Google Scholar 

  6. A. Grajcar, M. Opiela, G. Fojt-Dynamara: Arch. Civ. Mech. Eng., 2009, vol. 9, pp. 49-58.

    Article  Google Scholar 

  7. T. Gladman: Mater. Sci. Technol., 1999, vol. 15, pp. 30-6.

    Article  Google Scholar 

  8. J. P. Chateau, A. Dumay, S. Allain and A. Jacques: J. of Phys. Conf. Ser., 2010, vol. 240, pp. 1-4.

    Google Scholar 

  9. H. Yen, M. Huang, C.P. Scott and J. Yang: Scripta Mater., 2012, vol. 6, pp. 1018–23.

    Article  Google Scholar 

  10. C. Klinkenberg, K. Hulka and W. Bleck: Steel Res. Int., 2004, vol. 75, pp. 744-52.

    Google Scholar 

  11. S. Koyama, T. Ishii and K. Narita: J. Jpn. Inst. Met., 1971, vol. 35, pp. 1089-94.

    Google Scholar 

  12. F. Siciliano and J.J. Jonas: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 511-30.

    Article  Google Scholar 

  13. M. G. Akben, I. Weiss and J.J. Jonas: Acta Metall., 1981, vol. 29, pp. 111-21.

    Article  Google Scholar 

  14. A.S. Hamada, L.P. Karjalainen, M.C. Somani: ISIJ Int., 2007, vol. 47, pp. 907-12.

    Article  Google Scholar 

  15. A.S. Hamada, L.P. Karjalainen and M.C. Somani: Mater. Sci. Eng. A, 2007, vol. 467A, 114-24.

    Article  Google Scholar 

  16. N. Cabañas. N. Akdut, J. Penning and B.C. De Cooman: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3305-15.

    Article  Google Scholar 

  17. A. Grajcar, R. Kuziak and W. Zalecki: Arch. Civ. Mech. Eng., 2012, vol. 12, pp. 334-41.

    Article  Google Scholar 

  18. F. Reyes-Calderon, I. Mejia and J.M. Cabrera: Mater. Sci. Eng. A, 2013, vol 562A, pp. 46-52.

    Article  Google Scholar 

  19. F. Reyes-Calderon, I. Mejia, A. Boulaajn, J.M. Cabrera: Mater. Sci. Eng. A, 2013, vol 560A, pp. 552-560.

    Article  Google Scholar 

  20. H.S. Zurob, C.R. Hutchinson, Y. Brechet and G. Purdy: Acta Mater., 2002, vol. 50, pp. 3075-92.

    Article  Google Scholar 

  21. H.S. Zurob, C.R. Hutchinson, Y. Brechet and G.R. Purdy: Mater. Sci. Eng. A, 2004, vol. 382A, pp. 64-81.

    Article  Google Scholar 

  22. A. I. Fernandez, B. Lopez and J.M. Rodriguez Ibabe: Scripta Mater., 1999, vol. 40, pp. 543-49.

    Article  Google Scholar 

  23. G. Glover and C.M. Sellars: Metall. Trans., 1972, vol.3, pp. 2271-80.

    Article  Google Scholar 

  24. F. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd., Oxford, UK, 2004, p. 227.

    Google Scholar 

  25. J. Tarasiuk, Ph. Gerber and B. Bacroix: Acta Mater., 2002, vol. 50, pp. 1467-77.

    Article  Google Scholar 

  26. S. Mitsche, P. Poelt and C. Sommithsch: J. Microsc., 2007, vol. 227, pp. 267-74.

    Article  Google Scholar 

  27. H. Lu, P. Sivaprasad and C.H.J. Davies: Mater. Character., 2003, vol. 51, pp. 293-300.

    Article  Google Scholar 

  28. D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo: Acta Mater., 2007, vol. 55, pp. 4233-41.

    Article  Google Scholar 

  29. S. Mandal, A.K. Bhaduri and V.S. Sarma: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1062-72.

    Article  Google Scholar 

  30. L. Llanos, B. Pereda, D. Jorge-Badiola, J.M. Rodriguez-Ibabe and B. López: Mater. Sci. Forum, 2013, vol. 753, pp. 443-8.

    Article  Google Scholar 

  31. M.F. Ahsby and R. Ebeling: T. Metall. Soc. AIME, 1966, vol. 236, pp. 1396-404.

    Google Scholar 

  32. Y. Yazawa, T. Furuhara and T. Maki: Acta Mater., 2004, vol. 52, pp. 3727–36.

    Article  Google Scholar 

  33. A.S. Taylor, P. Cizek and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 5832-44.

    Article  Google Scholar 

  34. P.J. Thomas and P.A. Midgley: Top. Catal., 2002, vol. 21, pp. 109-38.

    Article  Google Scholar 

  35. E. Courtois, T. Epicier and C. Scott: Micron, 2006, vol. 37, pp. 492–502.

    Article  Google Scholar 

  36. J.O. Andersson, T. Helander, L. Hoglund, P.F. Shi and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  37. PrecHiMn-04 database (RFSR-CT-2010-00018).

  38. M. Gomez, S.F. Medina, P. Valles: ISIJ Int., 2005, vol. 45, pp. 1711-20

    Article  Google Scholar 

  39. H. Beladi, P. Cizek and P.D. Hodgson: Acta Mater., 2010, vol. 58, pp. 3531-41.

    Article  Google Scholar 

  40. H. Beladi, P. Cizek and P.D. Hodgson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1175-89.

    Article  Google Scholar 

  41. P. Cizek, J.A. Whiteman, W.M. Rainforth and J.H. Beynon: J. Microsc., 2004, vol. 213, pp. 285-95.

    Article  Google Scholar 

  42. W.M. Rainforth, M.P. Black, R.L. Higginson, E.J. Palmiere, C.M. Sellars, I. Prabst, P. Warbichler and F. Hofer: Acta Mater, 2002, vol. 50, pp. 735-47.

    Article  Google Scholar 

  43. V. Nagarajan, E. J. Palmiere and C. M. Sellars: Mater. Sci. Technol., 2009, vol. 25, pp. 1168-74.

    Article  Google Scholar 

  44. A.S. Taylor, P. Cizek and P.D. Hodgson: Acta Mater., 2012, vol. 60, pp. 1548-69.

    Article  Google Scholar 

  45. D. Poddar, P. Cizek, H. Beladi and P.D. Hodgson: Acta Mater., 2014, vol. 80, pp. 1-15.

    Article  Google Scholar 

  46. P. Cizek, H. Beladi, A. S. Taylor and Peter D. Hodgson: Mater. Sci. Forum, 2013, vol. 753, pp 54-7.

    Article  Google Scholar 

  47. Z. Aretxabaleta, B. Pereda and B. López: Metall. Mater. Trans., 2014, vol. 45A, pp. 934-47.

    Article  Google Scholar 

  48. H.L. Andrade, M. G. Akben and J. J. Jonas: Metall. Trans. A, 1983, vol. 14, pp. 1967-77.

    Article  Google Scholar 

  49. A.I. Fernandez, P. Uranga, B. López, J.M. Rodriguez-Ibabe: ISIJ Int., 2000, vol. 40, pp. 893-901.

    Article  Google Scholar 

  50. B. Pereda, Z. Aretxabaleta, B. López: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1279-93.

    Article  Google Scholar 

  51. C. Iparraguirre, A.I. Fernández, B. López, C. Scott, A. Rose, W. Kranendonk, B. Soenen, G. Paul: Mater. Sci. Forum, 2005, Vols. 500-501 pp. 677-84.

    Article  Google Scholar 

  52. K. B. Kang, O. Kwon, W.B. Lee and C.G. Park: Scripta Mater., 1997, vol. 36, pp. 1303-08.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial support from the European Union, Research Programme of the Research Fund for Coal and Steel (RFSR-CT-2010-00018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz López.

Additional information

Manuscript Submitted February 12, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llanos, L., Pereda, B. & López, B. Interaction Between Recovery, Recrystallization, and NbC Strain-Induced Precipitation in High-Mn Steels. Metall Mater Trans A 46, 5248–5265 (2015). https://doi.org/10.1007/s11661-015-3066-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3066-2

Keywords

Navigation