Skip to main content
Log in

Analysis of the Effect of Al on the Static Softening Kinetics of C-Mn Steels Using a Physically Based Model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Al addition on the static softening behavior of C-Mn steels was investigated. Double-hit torsion tests were performed at different deformation temperatures ranging from 1198 K to 1338 K (925 °C to 1065 °C) with pass strains of ε = 0.2 and 0.35. It was found that solute Al produced a significant delay on the static softening kinetics. Additionally, at the lowest temperatures [1198 K to 1238 K (925 °C to 965 °C)] and highest Al level (2 wt pct), austenite to ferrite phase transformation was found to be concurrent with softening, leading this to higher softening retardation. The softening kinetics of the steels investigated were analyzed using a physically based model which couples recovery and recrystallization mechanisms. The main parameters of the model were identified for the present alloys. An expression for the grain boundary mobility of the base C-Mn steel was derived and the retarding effect of Al in solid solution on the static recrystallization kinetics was introduced in the model. Reasonable agreement was obtained between model and experimental results for a variety of deformation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

b :

magnitude of the Burgers vector

C s :

solute concentration

D :

cross-boundary diffusion coefficient

D 0 :

initial austenite grain size

D Bulk :

bulk diffusion coefficient of the solute in austenite

D GB :

grain boundary self-diffusion coefficient

D REX :

recrystallized austenite grain size

E :

Young’s modulus

E b :

binding energy of solute atoms to grain boundaries

F REX :

driving force for recrystallization

k :

Boltzmann’s constant

K 1 :

constant in Eqs. [9] and [10]

K 2 :

constant in Eq. [19]

l a :

activation length for the recovery process

l Disloc :

activation length for the recovery process due to dislocations

l SD :

activation length for the recovery process due to solutes

M :

Taylor factor

M INT :

grain boundary mobility for the base steel

M Pure :

Turnbull’s estimate for the mobility of a pure material

M S :

grain boundary mobility for the solute containing material

M(t):

grain boundary mobility

n :

Avrami exponent

N REX :

number of recrystallization nuclei

N V :

number of atoms per unit volume

r :

atomic radius of the solute

r Fe :

atomic radius of iron

R :

gas constant

T :

temperature

t 0.5 :

time for 50 pct softening fraction

U a :

activation energy of the recovery process

V a :

activation volume of the recovery process

ν :

Poisson’s ratio for iron

ν d :

Debye frequency

V M :

molar volume of the austenite

X REX :

recrystallized fraction

X SOFT :

fractional softening

α :

interaction parameter in Cahn’s solute drag model

α T :

constant of the order of 0.15 (Eq. [6])

δ :

grain boundary width

ε :

strain

\( \dot{\varepsilon } \) :

strain rate

μ :

austenite shear modulus

ρ(t):

instantaneous dislocation density

σ 0 :

flow stress of the completely softened material

σ m :

flow stress of the work hardened material

σ r :

flow stress of the partially softened material

σ REX :

yield stress of the fully recrystallized matrix

σ y :

yield stress

σ(t):

flow stress of the unrecrystallized material

τ 0.5 :

normalized 50 pct softening time

References

  1. C.M. Sellars: Mater. Sci. Technol., 1990, vol. 6, pp. 1072–81.

    Article  Google Scholar 

  2. A.I. Fernandez, P. Uranga, B. Lopez, J.M. Rodriguez-Ibabe: ISIJ Int., 2000, vol. 40, pp. 893-901.

    Article  Google Scholar 

  3. P.D. Hogson, R.K. Gibbs: ISIJ Int., 1992, vol. 32, pp. 1329-38.

    Article  Google Scholar 

  4. H.S. Zurob, C.R. Hutchinson, Y. Brechet, G. Purdy: Acta Mater., 2002, vol. 50, pp. 3075-92.

    Article  Google Scholar 

  5. M.G. Akben, B. Bacroix, J.J. Jonas: Acta Metall., 1983, vol. 31, pp. 161-74.

    Article  Google Scholar 

  6. H.L. Andrade, M.G. Akben, J.J. Jonas: Metall. Trans. A, 1983, vol. 14A, pp. 1967-77.

    Article  Google Scholar 

  7. N. Maruyama, R. Uemori, M. Sugiyama: Mater. Sci. Eng. A, 1998, vol. 250, pp. 2-7.

    Article  Google Scholar 

  8. M. Gomez, C.I. Garcia, D.M. Haezebrouck, A.J. DeArdo: ISIJ Int., 2009, vol. 49, pp. 302-11.

    Article  Google Scholar 

  9. M. De Meyer, D. Vanderschueren, B.C. De Cooman: ISIJ Int., 1999, vol. 39, pp. 813-22.

    Article  Google Scholar 

  10. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. van Huumbeeck, F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1061-67.

    Article  Google Scholar 

  11. A.K. Srivastava, D. Bhattacharjee, G. Jha, N. Gope, S.B. Singh: Mater. Sci. Eng. A, 2007, vol. 445-446, pp. 549-57.

    Article  Google Scholar 

  12. E.I. Poliak and F. Siciliano: MS&T 2004 Conference Proceedings, New Orleans, 2004, pp. 39–45.

  13. P.P. Suikkanen, V.T.E. Lang, M.C. Somani, D.A. Porter, L.P. Karjalainen: ISIJ Int., 2012, vol. 52, pp. 471-76.

    Article  Google Scholar 

  14. A.I. Fernandez, B. Lopez, J.M. Rodriguez-Ibabe: Scripta Mater., 1999, vol. 40, pp. 543-49.

    Article  Google Scholar 

  15. Thermodynamic Database TCFE6 – TCS Steels/Fe-Alloys Database, Thermo-Calc.

  16. G. Glover, C.M. Sellars: Metall. Trans., 1972, vol. 3, pp. 2271-80.

    Article  Google Scholar 

  17. E.J. Giordani, A.M. Jorge, O. Balancin: Scripta Mater., 2006, vol. 55, pp. 743-46.

    Article  Google Scholar 

  18. K.B. Kang, O. Kwon, W.B. Lee, C.G. Park: Scripta Mater., 1997, vol. 36, pp. 1303-08.

    Article  Google Scholar 

  19. J.H. Beynon, C.M. Sellars: ISIJ Int., 1992, vol. 32, pp. 359-67.

    Article  Google Scholar 

  20. R. Abad, A.I. Fernandez, B. Lopez, J.M. Rodriguez-Ibabe: ISIJ Int., 2001, vol. 41, pp. 1373-82.

    Article  Google Scholar 

  21. Z. Aretxabaleta, B. Pereda, S.V. Parker, and B. Lopez: in Proceedings of 4th International Conference on Thermomechanical Processing of Steels, Sheffield, 2012.

  22. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st edition, Oxford, Pergamon Press, 1995, pp. 188-95.

    Google Scholar 

  23. G. Saada: Acta Metall., 1960, vol. 8, pp. 841-47.

    Article  Google Scholar 

  24. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, 1982, pp. 60–70.

  25. M. Verdier, Y. Brechet, P. Guyot: Acta Mater., 1999, vol. 47, pp. 127-34.

    Article  Google Scholar 

  26. E. Nes: Prog. Mater. Sci., 1998, vol. 41, pp. 129-93.

    Article  Google Scholar 

  27. E. Nes: Acta Metall. Mater., 1995, vol. 43, pp. 2189-207.

    Article  Google Scholar 

  28. A. Yoshie, T. Fujita, M. Fujioka, K. Okamoto, H. Morikawa: ISIJ Int., 1996, vol. 36, pp. 467-473.

    Article  Google Scholar 

  29. S. Sarkar, M. Militzer: Mater. Sci. Technol., 2009, vol. 25, pp. 1134-46.

    Article  Google Scholar 

  30. A. Smith, A. Miroux, J. Sietsma, S. Van Der Zwaag: Steel Res., 2006, vol. 77, pp. 595-602.

    Google Scholar 

  31. G. Arieta, C.M. Sellars: Scr. Metall. Mater., 1994, vol. 30, pp. 707-12.

    Article  Google Scholar 

  32. H. Zurob: Ph.D. Thesis, McMaster University, Canada, 2003.

  33. D. Turnbull: Trans. Am. Inst. Min. Eng., 1951, vol. 191, pp. 661-65.

    Google Scholar 

  34. J.W. Cahn: Acta Metall., 1962, vol. 10, pp. 789-98.

    Article  Google Scholar 

  35. E.A. Simielli, S. Yue, J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 597-608.

    Article  Google Scholar 

  36. A.H. Cottrell: Dislocations and Plastic Flow in Crystals, Oxford, Oxford University Press, 1953, p. 57.

    Google Scholar 

  37. H.S. Zurob, C.R. Hutchinson, Y. Brechet, G.R. Purdy: Mater. Sci. Eng. A, 2004, vol. 382A, pp. 64-81.

    Article  Google Scholar 

  38. C. Iparragirre, A.I. Fernandez, J.M. Rodriguez-Ibabe, B. Lopez: Mater. Sci. Forum, 2007, vol. 539-543, pp. 4119-24.

    Article  Google Scholar 

  39. M. Gomez, L. Rancel, S.F. Medina: Mater. Sci. Eng. A, 2009, vol. 506A, pp. 165-73.

    Article  Google Scholar 

  40. V. Burachinsky, J.R. Cahoon: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 563-82.

    Article  Google Scholar 

  41. L. Lissel, G. Engberg, and U. Borggren: in Proceedings of the 3rd International Conference on Thermomechanical Processing of Steels, 2008, Associazione Italiana di Metallurgia, Padua, 2001.

  42. J.J. Jonas: in Proceedings of international Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, THERMEC-88, Tokyo, 1988, pp. 59–69.

  43. J.J. Jonas, in: Dunne DP and Chandra T (eds.), High Strength Low Alloy Steels, Wollongong, University of Wollongong, 1984, pp. 80-91.

    Google Scholar 

  44. H.J. McQueen, S. Yue, N.D. Ryan, E. Fry: J. Mater. Process. Technol., 1995, vol. 53, pp. 293-310.

    Article  Google Scholar 

  45. M. Oyarzabal, A. Martinez de Guerenu, I. Gutierrez: Mater. Sci. Eng. A, 2008, vol. 485A, pp. 200-09.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the European Union, Research Programme of the Research Fund for Coal and Steel (RFSR-CT-2009-00011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz López.

Additional information

Manuscript submitted March 15, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aretxabaleta, Z., Pereda, B. & López, B. Analysis of the Effect of Al on the Static Softening Kinetics of C-Mn Steels Using a Physically Based Model. Metall Mater Trans A 45, 934–947 (2014). https://doi.org/10.1007/s11661-013-2014-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2014-2

Keywords

Navigation