Skip to main content
Log in

Softening Kinetics in High Al and High Al-Nb-Microalloyed Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Double-hit torsion tests were performed in order to study the effect of high Al levels (up to 2 wt.%) and Nb microalloying (up to 0.07 wt.%) on the static softening kinetics of 0.2%C-2%Mn steels. The addition of 1%Al leads to a delay in the softening kinetics due to solute-drag effect, equivalent to that exerted by 0.027%Nb. For the 2%Al steels, at temperatures below 1000 °C, γ → α phase transformation occurs after deformation, resulting in a larger retardation of the softening kinetics. At temperatures higher than 1000 °C, Nb in solid solution also contributes to the retardation of the static softening kinetics, and at lower temperatures NbC strain-induced precipitation leads to incomplete softening for the 1%Al steel, and to a complex interaction between softening, phase transformation, and NbC strain-induced precipitation for the 2%Al-Nb steels. The effect of Al on the static softening kinetics was quantified and introduced in a model developed in previous works for the prediction of the austenite microstructural evolution. In order to validate the results of the model, multipass torsion tests were carried out at conditions representative of hot strip and plate rolling mills. Model predictions show reasonable agreement with the results obtained at different deformation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Gómez, C.I. García, D.M. Haezebrouck, and A.J. Deardo, Design of Composition in (Al/Si)-Alloyed TRIP Steels, ISIJ Int., 2009, 49(2), p 302–311

    Article  Google Scholar 

  2. C. Georges, S. Godet, and P.J. Jaques, Development of High Perfomance Nb-Added Hot Rolled Bainitic Steels Presenting a TRIP Effect, Mater. Sci. Forum, 2005, 500–501, p 437–444

    Article  Google Scholar 

  3. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. van Huumbeeck, and F. Delannay, The Developments of Cold-Rolled TRIP-Assisted Multiphase Steels, Al-Alloyed TRIP Assisted Multiphase Steels, ISIJ Int., 2001, 41(9), p 1068–1074

    Article  Google Scholar 

  4. A.K. Srivastava, D. Bhattacharjee, G. Jha, N. Gope, and S.B. Singh, Microstructural and Mechanical Characterization of C-Mn-Al-Si Cold-Rolled TRIP-Aided Steel, Mater. Sci. Eng. A, 2007, 445–446, p 549–557

    Article  Google Scholar 

  5. E. Girault, A. Merterns, P. Jacques, Y. Houbaert, B. Verlinden, and J. Van Humbeeck, Comparison of the Effects of Silicon and Aluminium on the Tensile Behaviour of Multiphase TRIP-Assisted Steels, Scripta Mater., 2001, 44(6), p 885–892

    Article  Google Scholar 

  6. D.Q. Bai, A. Di Chiro, and S. Yue, Stability of Retained Austenite in a Nb Microalloyed Mn-Si TRIP Steel, Mater. Sci. Forum, 1998, 284–286, p 253–260

    Article  Google Scholar 

  7. Z. Li and D. Wu, Effects of Hot Deformation and Subsequent Austempering on the Mechanical Properties of Si-Mn TRIP Steels, ISIJ Int., 2006, 46(1), p 121–128

    Article  Google Scholar 

  8. E.I. Poliak and F. Siciliano, Hot Deformation of Mn-Al and Mn-Al-Nb Steels, 2004 MS&T Conference Proceedings, 2004 (Lousiana), The Minerals, Metals and Materials Society (TMS), Association for Iron & Steel Technology (AIST), 2004, p 39–45

  9. P.P. Suikkanen, V.T.E. Lang, M.C. Somani, D.A. Porter, and L.P. Karjalainen, Effect of Silicon and Aluminium on Austenite Static Recrystallization Kinetics in High-Strength TRIP-aided Steels, ISIJ Int., 2012, 52(3), p 471–476

    Article  Google Scholar 

  10. Z. Aretxabaleta, B. Pereda, and B. López, Analysis of the Effect of Al on the Static Softening Kinetics of C-Mn Steels Using a Physically Based Model, Metall. Mater. Trans., 2014, 45A(2), p 934–947

    Article  Google Scholar 

  11. Z. Aretxabaleta, B. Pereda, and B. López, Multipass Hot Deformation Behaviour of High Al and Al-Nb Steels, Mater. Sci. Eng. A, 2014, 600, p 37–46

    Article  Google Scholar 

  12. M. De Meyer, D. Vanderschueren, and B.C. DeCooman, The Influence of the Substitution of Si by Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels, ISIJ Int., 1999, 39(8), p 813–822

    Article  Google Scholar 

  13. A. Fernandez, B. Lopez, and J.M. Rodriguez-Ibabe, Relationship Between the Austenite Recrystallised Fraction and the Softening Measured from the Interrupted Torsión Test Technique, Scr. Mater., 1999, 4(5), p 543–549

    Article  Google Scholar 

  14. F.J. Humphreys and M. Hatherly, Recrystallisation and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, 2004, p 229–232

    Google Scholar 

  15. S.F. Medina, A. Quispe, P. Valles, and J.L. Banos, Recrystallization-Precipitation Interaction Study of Two Medium Carbon Niobium Microalloyed Steels, ISIJ Int., 1999, 39(9), p 913–922

    Article  Google Scholar 

  16. A.I. Fernandez, P. Uranga, B. López, and J.M. Rodríguez-Ibabe, Static Recrystallization Behaviour of a Wide Range of Austenite Grain Sizes in Microalloyed Steels, ISIJ Int., 2000, 40(9), p 893–901

    Article  Google Scholar 

  17. F. Siciliano and E.I. Poliak, Modeling of the Resistance to Hot Deformation and the Effects of Microalloying in High-Al Steels under Industrial Conditions, Mater. Sci. Forum, 2005, 500–501, p 195–202

    Article  Google Scholar 

  18. Thermodynamic Database TCFE6-TCS Steels/Fe-Alloys Database, Thermo-Calc

  19. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26(2), p 273–312

    Article  Google Scholar 

  20. D.Q. Bai, S. Yue, W.P. Sun, and J.J. Jonas, Effect of Deformation Parameters on the No-Recrystallization Temperature in Nb-Bearing Steels, Metall. Mater. Trans., 1993, A24(10), p 2151–2159

    Article  Google Scholar 

  21. B. Pereda, J.M. Rodríguez-Ibabe, and B. López, Improved Model of Kinetics of Strain Induced Precipitation and Microstructure Evolution of Nb Microalloyed Steels during Multipass Rolling, ISIJ Int., 2008, 48(10), p 1457–1466

    Article  Google Scholar 

  22. J. Irvine, F.B. Pickering, and T. Gladman, Grain Refined C-Mn Steels, J. Iron Steel Inst., 1967, 205, p 161–182

    Google Scholar 

  23. S. Koyama, T. Ishii, and K. Narita, Effects of Mn, Si, Cr and Ni on the Solution and Precipitation of Niobioum Carbide in Iron Austenite, J. Jpn. Inst. Met., 1971, p 1089–1094.

  24. J.H. Beynon and C.M. Sellars, Modelling Microstructure and Its Effects During Multipass Hot Rolling, ISIJ Int., 1992, 32(3), p 359–367

    Article  Google Scholar 

  25. C.M. Sellars, The Physical Metallurgy of Hot Working, Hot Working and Forming Processes, Proceedings of An International Conference, 1979, ed. By C.M. Sellars and G.J. Davies, 1979 (Sheffield), Met. Soc., London, 1980, p. 3–15

  26. R. Abad, A.I. Fernández, B. López, and J.M. Rodríguez-Ibabe, Interaction between Recrystallization and Precipitation During Multipass Rolling in a Low Carbon Niobium Microalloyed Steel, ISIJ Int., 2001, 41(11), p 1373–1382

    Article  Google Scholar 

  27. A. Laasraoui and J.J. Jonas, Recrystallization of Austenite After Deformation at High Temperatures and Strain Rates-Analysis and Modeling, Metall. Trans., 1991, 22A(1), p 151–160

    Google Scholar 

  28. P.D. Hodgson and R.K. Gibbs, A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels, ISIJ Int., 1992, 3(12), p 1329–1338

    Article  Google Scholar 

  29. S.F. Medina and A. Quispe, Improved Model for Static Recrystallization Kinetcis of Hot Deformed Austenite in Low Alloy and Nb/V Microalloyed Steels, ISIJ Int., 2001, 41(7), p 774–781

    Article  Google Scholar 

  30. A. Grajcar, P. Skrzypczyk, R. Kuziak, and K. Golombek, Effect of Finishing Hot-Working Temperature on Microstructure of Thermomechanically Processed Mn-Al Multiphase Steels, Steel Res. Int., 2014, 85(6), p 1058–1069

    Article  Google Scholar 

  31. W.J. Liu and M.G. Akben, Softening Behavior or Two Ti Bearing Steels During Torsional Simulation of Rolling, Can. Metall. Q., 1987, 26(2), p 145–153

    Article  Google Scholar 

  32. H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Technol., 1995, 53, p 293–310

    Article  Google Scholar 

  33. G. Wang, “Static Recrystallization and Precipitation in Nb-Al HSLA Steels”, PhD Thesis, McGill University, Montreal, Canada, 1990

  34. J. Jonas, Mechanical Testing for the Study of Austenite Recrystallization and Carbonitride Precipitation, High Strength Low Alloy Steels Proc., D.P. Dunne and T. Chandra, Eds., University Press, Wollongong, 1984, p 80–91

  35. J.P. Michel and J.J. Jonas, Precipitation Kinetics and Solute Strengthening in High Temperature Austenite Containing Al and N, Acta Metall., 1980, 29(3), p 513–526

    Article  Google Scholar 

  36. M.G. Akben, T. Chandra, P. Plassiard, and J.J. Jonas, Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese, Acta Metall., 1984, 32(4), p 591–601

    Article  Google Scholar 

  37. F. Siciliano, Jr, and J.J. Jonas, Mathematical Modeling of the Hot Strip Rolling of Microalloyed Nb, Multiply-Alloyed Cr-Mo, and Plain C-Mn Steels, Metall. Trans., 2000, 31A(2), p 511–530

    Article  Google Scholar 

  38. R.M. Skolly and E.I. Poliak, Aspects of Production Hot Rolling of Nb Microalloyed High Al High Strength Steels, Mater. Sci. Forum, 2005, 500–501, p 187–194

    Article  Google Scholar 

  39. S.V. Parker, R.C. Beaverstock, Z. Husain, G. Claxton, S. Cobo, L. Lutz, S. Joly, Z. Aretxabaleta, B. Pereda, B. López, B. Pohu and G. Lanno, Development of Microstructure Based Tools for Alloy and Rolling Process Design (Microtools), Final Report, Eur 26212, Luxembourg (2013)

Download references

Acknowledgments

The authors acknowledge financial support from the European Union, Research Programme of the Research Fund for Coal and Steel (RFSR-CT-2009-00011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereda, B., Aretxabaleta, Z. & López, B. Softening Kinetics in High Al and High Al-Nb-Microalloyed Steels. J. of Materi Eng and Perform 24, 1279–1293 (2015). https://doi.org/10.1007/s11665-015-1387-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1387-3

Keywords

Navigation