Skip to main content
Log in

Deformation and phase transformation mechanisms of 40Cr10Si2Mo steel during hot compression

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Thermo-mechanical experiments on martensitic heat-resistant 40Cr10Si2Mo steel were conducted using a Gleeble simulator in temperature and strain rate ranges of 1073–1373 K and 0.1–20 s−1, respectively. Processing maps were developed and correlated with deformed microstructures based on the dynamic material model theory. The analysis of the maps revealed that both applied temperature and strain rate had significant effects on the power dissipation efficiency and flow instability of the steel alloy. Electron backscatter diffraction analysis was also implemented to study the effect of deformation conditions on martensitic morphology. The results showed that higher temperatures and strain rates led to a fine martensitic packet, and the martensite lath increased in width at high temperatures. Two deformation domains, which exhibit different recrystallization processes, were recognized. The discontinuous dynamic recrystallization (DRX) mechanism in the low strain rate domain was characterized by the migration and growth of high-angle grains during straining. In contrast, in the high strain rate domain, the development of new grain boundaries is primarily associated with the deformation microbands in the low-temperature deformation domain. As the temperature increased, the high dislocation density accelerated the migration of the grain boundaries. Furthermore, the DRX mechanism changed from continuous DRX to post-DRX. This change in the DRX mechanism type was attributed to the time during which the sample remained high temperature after deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study. The processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. P. Yan, Z.D. Liu, Mater. Sci. Eng. A 650 (2016) 290–294.

    Article  Google Scholar 

  2. Z.M. Cai, H.C. Ji, W.C. Pei, X.F. Tang, X.M. Huang, J.P. Liu, Vacuum 165 (2019) 324–336.

    Article  Google Scholar 

  3. D. Poddar, P. Cizek, H. Beladi, P.D. Hodgson, Acta Mater. 80 (2014) 1–15.

    Article  Google Scholar 

  4. D. Poddar, P. Cizek, H. Beladi, P.D. Hodgson, Metall. Mater. Trans. A 46 (2015) 5933–5951.

    Article  Google Scholar 

  5. H. Beladi, P. Cizek, A.S. Taylor, D. Poddar, Mater. Sci. Forum 753 (2013) 76–79.

    Article  Google Scholar 

  6. H. Beladi, P. Cizek, P.D. Hodgson, Scripta Mater. 62 (2010) 191–194.

    Article  Google Scholar 

  7. H. Beladi, P. Cizek, P.D. Hodgson, Acta Mater. 59 (2011) 1482–1492.

    Article  Google Scholar 

  8. W.H. Huang, L.P. Lei, G. Fang, Mater. Charact. 163 (2020) 110307.

    Article  Google Scholar 

  9. M. Chegini, M.R. Aboutalebi, S.H. Seyedein, G.R. Ebrahimi, M. Jahazi, J. Manuf. Process. 56 (2020) 916–927.

    Article  Google Scholar 

  10. F. Ren, F. Chen, J. Chen, X.Y. Tang, J. Manuf. Process. 31 (2018) 640–649.

    Article  Google Scholar 

  11. A. Momeni, K. Dehghani, Mater. Sci. Eng. A 527 (2010) 5467–5473.

    Article  Google Scholar 

  12. S. Saadatkia, H. Mirzadeh, J.M. Cabrera, Mater. Sci. Eng. A 636 (2015) 196–202.

    Article  Google Scholar 

  13. W.F. Zhang, X.L. Li, W. Sha, W. Yan, W. Wang, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 590 (2014) 199–208.

    Article  Google Scholar 

  14. Q.C. Fan, X.Q. Jiang, Z.H. Zhou, W. Ji, H.Q. Cao, Mater. Des. 65 (2015) 193–203.

    Article  Google Scholar 

  15. Y.B. Tan, L.H. Yang, C. Tian, W.C. Liu, R.P. Liu, X.Y. Zhang, Mater. Sci. Eng. A 597 (2014) 171–177.

    Article  Google Scholar 

  16. Y. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15 (1984) 1883–1892.

    Article  Google Scholar 

  17. D.G. He, Y.C. Lin, M.S. Chen, J. Chen, D.X. Wen, J. Alloy. Compd. 649 (2015) 1075–1084.

    Article  Google Scholar 

  18. X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, Y.F. Han, Intermetallics 20 (2012) 1–7.

    Article  Google Scholar 

  19. D.G. He, Y.C. Lin, J. Chen, D.D. Chen, J. Huang, Y. Tang, M.S. Chen, Mater. Des. 154 (2018) 51–62.

    Article  Google Scholar 

  20. L.Y. Ye, Y.W. Zhai, L.Y. Zhou, H.Z. Wang, P. Jiang, J. Manuf. Process. 59 (2020) 535–544.

    Article  Google Scholar 

  21. J.L. Qu, X.F. Xie, Z.N. Bi, J.H. Du, M.C. Zhang, J. Alloy. Compd. 785 (2019) 918–924.

    Article  Google Scholar 

  22. Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Acta Mater. 82 (2015) 244–254.

    Article  Google Scholar 

  23. J.J. Zhang, Y.P. Yi, S.Q. Huang, X.C. Mao, H.L. He, J.G. Tang, W.F. Guo, F. Dong, Mater. Sci. Eng. A 804 (2021) 140650.

    Article  Google Scholar 

  24. Q.J. Wang, B.T. Gao, K.S. Wang, W. Wang, L.B. Tong, X.J. Li, Mater. Sci. Eng. A 820 (2021) 141578.

    Article  Google Scholar 

  25. S.L. Long, Y.L. Liang, J. Yun, Y. Liang, M. Yang, Y.L. Yi, Mater. Sci. Eng. A 676 (2016) 38–47.

    Article  Google Scholar 

  26. C.M. Li, L. Huang, M.J. Zhao, X.T. Zhang, J.J. Li, P.C. Li, Mater. Sci. Eng. A 797 (2020) 139925.

    Article  Google Scholar 

  27. K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574.

    Article  Google Scholar 

  28. J.J. Jonas, I. Weiss, Met. Sci. 13 (1979) 238–245.

    Article  Google Scholar 

  29. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130–207.

    Article  Google Scholar 

  30. Y.K. Xu, P. Birnbaumb, S. Pilz, X.C. Zhuang, Z. Zhao, V. Kräusel, Results Phys. 14 (2019) 102426.

    Article  Google Scholar 

  31. Y. Wang, W.Z. Shao, L. Zhen, X.M. Zhang, Mater. Sci. Eng. A 486 (2008) 321–332.

    Article  Google Scholar 

  32. J.F. Xie, Y.L. Zhu, F.L. Bian, C. Liu, Mater. Charact. 132 (2017) 145–155.

    Article  Google Scholar 

  33. Z.C. Hou, Z.H. Nie, Z.C. Liu, F. Hao, M.R. Li, G. Zhou, C.W. Tan, J. Alloy. Compd. 865 (2021) 158872.

    Article  Google Scholar 

  34. Z.C. Sun, H.L. Wu, J. Cao, Z.K. Yin, Int. J. Plasticity 106 (2018) 73–87.

    Article  Google Scholar 

  35. M. Hillert, Acta Metall. 13 (1965) 227–238.

    Article  Google Scholar 

Download references

Acknowledgements

Partial financial support was received from Science and Technology Program of Xi’an (2020KJRC0051). The research leading to these results received funding from the National Natural Science Foundation of China under Grant Agreement No. 52174371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-juan Wang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Qj., Wang, Qr., Du, Zz. et al. Deformation and phase transformation mechanisms of 40Cr10Si2Mo steel during hot compression. J. Iron Steel Res. Int. 30, 760–771 (2023). https://doi.org/10.1007/s42243-022-00899-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00899-w

Keywords

Navigation