Skip to main content
Log in

Spatial Aspects of Martensite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work re-examines the martensite transformation in FeNiC, FeNiMn, and high-C steels using the microstructural path concept adapted to the uniqueness of martensite. The analysis of the microstructural path and the developed formalisms support the view that strain accommodation underlies the development of the spatial aspects of the transformation in the alloys considered. The partitioning of the austenite grains and the martensite burst are entailed by the elastic propagation of the midribs. In addition, we found agreement of the empirical equations used in previous works and the microstructural path models now described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.-X. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol. 54, pp. 1101–70.

    Article  CAS  Google Scholar 

  2. J.W. Christian: ICOMAT-1979 Proc., MIT Press, Boston, MA, 1979, pp. 220–34.

    Google Scholar 

  3. S. Kajiwara: Proc. Japan-US Seminar “Mechanical Behavior of Metals and Alloys Associated with Displacive Phase Transformations,” Rensselaer Polytechnic Institute, Troy, NY, 1979, unpublished.

  4. G.B. Olson and M. Cohen: in Principles of Martensitic Transformation, Frontiers in Materials Technologies, Elsevier, Amsterdam, 1985, pp. 43–87.

    Google Scholar 

  5. S. Kajiwara: Metall. Trans. A, 1986, vol. 17A, pp. 1693–1702.

    Article  CAS  Google Scholar 

  6. Y. Wang and A.G. Khachaturyan: Acta Mater., 1997, vol. 45, pp. 159–713.

    Google Scholar 

  7. V.I. Levitas, A.V. Idesman G.B. Olson, and E. Stein: Phil. Mag, 2002, vol. 82, pp. 429–62.

    Article  CAS  Google Scholar 

  8. R.E. Cech and D. Turnbull: Trans. AIME, 1956, vol. 206, pp. 124–32.

    Google Scholar 

  9. M. Cohen and G.B. Olson: (1976) Suppl. Trans. JIM, 1976, vol. 17, pp. 93–98.

  10. J.C. Fisher, J.H. Hollomon, and D. Turnbull: Trans. AIME, 1949, vol. 185, pp. 691–700.

    Google Scholar 

  11. D.G. McMurtrie and C.L. Magee: Metall. Trans., 1970, vol. 1, pp. 3185–91.

    CAS  Google Scholar 

  12. J.R.C. Guimarães and P.R. Rios: J. Mater. Sci., 2008, vol. 44, pp. 998–1005.

    Article  Google Scholar 

  13. J.R.C. Guimarães and P.R. Rios: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2937–39.

    Article  Google Scholar 

  14. A.M. Gokhale, C.V. Iswaran, and R.T. DeHoff: Metall. Trans. A, 1979, vol. 10A, pp. 1239–45.

    Google Scholar 

  15. A.M. Gokhale: Metall. Trans. A, 1985, vol. 16A, pp. 456–57.

    CAS  Google Scholar 

  16. A.M. Gokhale: Metall. Trans. A, 1986, vol. 17A, pp. 1625–29.

    CAS  Google Scholar 

  17. R.A. Vandermeer, R.A. Masumura, and B.B. Rath: Acta Metall. Mater., 1991, vol. 39, pp. 383–89.

    Article  CAS  Google Scholar 

  18. P.R. Rios, R.B. Godiksen, S. Schmidt, D.J. Jensen, and R.A. Vandermeer: Scripta Mater., 2006, vol. 54, pp. 1509–13.

    Article  CAS  Google Scholar 

  19. P.R. Rios and J.R.C. Guimaraes: Scritpa Mater., 2007, vol. 57, pp. 1105–08.

    Article  CAS  Google Scholar 

  20. D.M. Haezebrouck: DSc. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1987.

  21. T. Maki: Proc. 1st Int. Symp. on Steel Science, T. Furuhara and K. Tsuzaki, eds., ISIJ, Tokyo, 2007, pp. 1–10.

  22. J.R.C. Guimarães and J.C. Gomes: Metall. Trans. A, 1979, vol. 10A, pp. 109–12.

    Google Scholar 

  23. J.C. Bokros and E.R. Parker: Acta Metall., 1963, vol. 11, pp. 1291–301.

    Article  CAS  Google Scholar 

  24. V. Raghavan: Acta Metall., 1969, vol. 17, pp. 1299–1303.

    Article  CAS  Google Scholar 

  25. R.F. Bunshah and R.F. Mehl: Trans. AIME, 1953, vol. 197, pp. 1251–58.

    Google Scholar 

  26. G.B. Olson, K. Tsuzaki, and M. Cohen: Mater. Res. Symp. Proc., 1987, vol. 57, pp. 129–48.

    Article  Google Scholar 

  27. W. Zang, Y.M. Jin, and A.G. Khachaturyan: Acta Mater., 2007, vol. 55, pp. 565–74.

    Article  Google Scholar 

  28. K. Tsuzaki and T. Maki: J. Jpn. Inst. Met., 1981, vol. 45, pp. 126–34.

    CAS  Google Scholar 

  29. W. Krauss, S.K. PabI, and H. Gleiter: Acta Metall., 1989, vol. 37, pp. 25–30.

    Article  CAS  Google Scholar 

  30. J.R.C. Guimarães and P.R. Rios: J. Mater. Sci., 2010, vol. 45, pp. 1074–77.

    Article  Google Scholar 

  31. W.A. Johnson and R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416–41.

    Google Scholar 

  32. M.J. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    Article  CAS  Google Scholar 

  33. A.N. Kolmogorov: Izv. Akad. Nauk. USSR-Ser. Matemat., 1939, vol. 1, pp. 355–59.

    Google Scholar 

  34. J.R.C. Guimarães and A. Saavedra: Mater. Sci. Eng., 1984, vol. 62, pp. 11–15.

    Article  Google Scholar 

  35. G. Ghosh: Mater. Sci. Eng. A, 1988, vol. 101, pp. 213–20.

    Article  CAS  Google Scholar 

  36. J.R.C. Guimarães: Mater. Sci. Technol., 2008, vol. 24, pp. 843–47.

    Article  Google Scholar 

  37. W. Thomson (Lord Kelvin): Phil. Mag., 1887, vol. 24, pp. 503–14.

  38. A.M. Kellerer: Radiat. Res., 1971, vol. 47, pp. 359–76.

    Article  CAS  Google Scholar 

  39. J.R.C. Guimaraes and J.C. Gomes: Acta Metall., 1978, vol. 26, pp. 1591–96.

    Article  CAS  Google Scholar 

  40. J.R.C. Guimarães: Mater. Sci. Eng., 1987, vol. 95, pp. 217–24.

    Article  Google Scholar 

  41. A. Shibata, T. Furuhara, and T. Maki: Acta Mater., 2010, vol. 58, pp. 3477–92.

    Article  CAS  Google Scholar 

  42. A. Shibata, T. Murakami, S. Morito, T. Furuhara, and T. Maki: Mater. Trans., 2008, vol. 46, pp. 1242–48.

    Article  Google Scholar 

  43. G. Miyamoto, A. Shibata, T. Maki, and T. Furuhara: Acta Mater., 2009, vol. 57, pp. 1120–31.

    Article  CAS  Google Scholar 

  44. J.R.C. Guimarães: Mater. Sci. Eng. A, 2008, vol. 476, pp. 106–11.

    Article  Google Scholar 

  45. G. Ghosh and V. Raghavan: Mater. Sci. Eng., 1986, vol. 79A, pp. 223–31.

    Google Scholar 

  46. W.Y.C. Chen and P.G. Winchell: Metall. Trans. A, 1976, vol. 7A, pp. 1177–82.

    CAS  Google Scholar 

  47. B.S. Lement and M. Cohen: Acta Metall., 1956, vol. 4, pp. 469–76.

    Article  CAS  Google Scholar 

  48. M. Hillert: Acta Metall., 1959, vol. 7, pp. 653–58.

    Article  CAS  Google Scholar 

  49. M.J. Starink: J. Mater. Sci., 1997, vol. 32, pp. 4061–70.

    Article  CAS  Google Scholar 

  50. F. Liu, F. Sommer, C. Bos, and E.J. Mittemeijer: Int. Mater. Rev., 2007, vol. 52, pp. 193–212.

    Article  CAS  Google Scholar 

  51. M. Tomelini and M. Fanfoni: Phys. Rev. B, 2008, vol. 78, pp. 014206–10.

    Article  Google Scholar 

  52. J.R.C. Guimarães and P.R. Rios: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1928–35.

    Article  Google Scholar 

  53. P.-H. Chang, P.G. Winchell, and G.L. Liedl: Metall. Trans. A, 1983, vol. 14A, pp. 163–73.

    Google Scholar 

  54. B.B. Rath: in Solid-Solid Phase Transformation, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 1097–1103.

Download references

Acknowledgments

Special thanks are due to Professor H. Goldenstein, University of São Paulo, for his assistance with the bibliography. One of the authors (PRR) is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and to Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Rios.

Additional information

Manuscript submitted September 16, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães, J.R.C., Rios, P.R. Spatial Aspects of Martensite. Metall Mater Trans A 43, 2218–2224 (2012). https://doi.org/10.1007/s11661-012-1102-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1102-z

Keywords

Navigation