Skip to main content
Log in

Unified Model for Plate and Lath Martensite with Athermal Kinetics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A unified formalism was developed to describe the transformation curve of athermal martensite with plate and lath/packet morphologies, which exhibit unique spatial aspects. Plates tend to partition grains and spread the reaction into a next grain, whereas laths generally do not exhibit grain partitioning and are contained within the packets. Using extended space concepts, it was possible to factor out the spatial aspects of martensite and to derive a unified model for the transformation curves. This model showed very good agreement with experimental data regarding carbon steels (lath) and nickel-carbon alloys (plate) martensite transformations that exhibit practical and scientific interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

superscriptX :

extended space quantity

T :

temperature

T* :

highest temperature at which martensite nucleation sites are available

k:

Boltzmann constant

ΔG :

driving force; negative of the change in Gibbs free energy

ΔG 0 :

value of ΔG at T = T*

ΔS :

change in entropy austenite/martensite

wt pct:

weight percent

M B :

burst temperature

V V :

volume fraction of martensite

N V :

number of martensite units per unit volume

n V :

volume density of martensite nucleation sites

\( n_{V}^{0} \) :

value of n V at T = T*

n S :

area density of martensite nucleation sites

\( n_{S}^{0} \) :

value of n S at T = T*

S V,mγ :

area per unit volume of martensite-austenite interface

S :

area per unit volume of austenite grain boundaries

q :

mean grain volume

\( \bar{v}_{{}}^{X} \) :

mean volume of martensite units in extended space

\( \bar{v}_{0}^{X} \) and \( \bar{v}_{1}^{X} \):

initial and final values of \( \bar{v}_{{}}^{X} \)

R 2 :

correlation coefficient

α, m, ς P , ς L , ζ, ζ L :

proportionality factors

z :

asymmetry factor

Γ, Ψ1, and Ψ2 :

lump factors

References

  1. J.R.C. Guimarães and P.R. Rios: J. Mater. Sci., 2008, vol. 43, pp. 5206–10.

    Article  ADS  Google Scholar 

  2. J.R.C. Guimarães and P.R. Rios: J. Mater. Sci., 2009, vol. 44, pp. 998–1005.

    Article  ADS  Google Scholar 

  3. J.R.C. Guimarães and P.R. Rios: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2264–74.

    Article  ADS  Google Scholar 

  4. A.R. Marder and G. Krauss: Trans. ASM, 1967, vol. 60, pp. 651–60.

    CAS  Google Scholar 

  5. C.L. Magee: in Phase Transformations, H.I. Aaronson, ed., ASM, Metals Park, OH, 1968, pp. 115–56.

    Google Scholar 

  6. J.R.C. Guimarães and A. Saavedra: Metall. Trans. A, 1985, vol. 16A, pp. 329–36.

    ADS  Google Scholar 

  7. A.N. Kolmogorov: Izv. Akad. Nauk USSR-Ser. Matemat., 1939, vol. 1, pp. 355–59.

    Google Scholar 

  8. W.A. Johnson and R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416–41.

    Google Scholar 

  9. M.J. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    Article  CAS  ADS  Google Scholar 

  10. V. Raghavan: Acta Metall., 1969, vol. 17, pp. 1299–303.

    Article  CAS  Google Scholar 

  11. E.S. Machlin and M. Cohen: Trans. AIME, 1951, vol. 191, pp. 746–54.

    Google Scholar 

  12. J.R.C. Guimarães and J.C. Gomes: Acta Metall., 1978, vol. 26, pp. 1591–96.

    Article  Google Scholar 

  13. R.F. Bunshah and R.F. Mehl: J. Met., 1953, vol. 5, pp. 1251–58.

    CAS  Google Scholar 

  14. M.A. Meyers: Acta Metall., 1980, vol. 28, pp. 757–70.

    Article  CAS  Google Scholar 

  15. S. Kajiwara: Metall. Trans. A, 1986, vol. 17A, pp. 1693–702.

    Article  CAS  ADS  Google Scholar 

  16. C. Hayzelden and B. Cantor: Acta Metall., 1986, vol. 34, pp. 233–42.

    Article  CAS  Google Scholar 

  17. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama: Mater. Trans., 2004, vol. 45, pp. 2245–51.

    Article  CAS  Google Scholar 

  18. J.R.C. Guimarães: Scripta Mater., 2007, vol. 57, pp. 237–39.

    Article  Google Scholar 

  19. Y. Zang, M. Jin, and A.G. Khachaturyan: Acta Mater., 2007, vol. 55, pp. 565–74.

    Article  Google Scholar 

  20. K. Tsuzaki and T. Maki: J. Jpn. Inst. Met., 1981, vol. 45, pp. 126–34.

    CAS  Google Scholar 

  21. W. Krauss, S.K. Pabi, and H. Gleiter: Acta Metall., 1989, vol. 37, pp. 25–30.

    Article  CAS  Google Scholar 

  22. G. Ghosh: Mater. Sci. Eng. A, 1988, vol. 101, pp. 213–20.

    Article  CAS  Google Scholar 

  23. J.R.C. Guimarães: Mater. Sci. Technol., 2008, vol. 24, pp. 843–47.

    Article  Google Scholar 

  24. P.M. Kelly: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 43–47.

    Google Scholar 

  25. M.-X. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol. 54, pp. 1101–70.

    Article  CAS  Google Scholar 

  26. P.R. Rios and J.R.C. Guimarães: Scripta Mater., 2007, vol. 57, pp. 1105–108.

    Article  CAS  Google Scholar 

  27. P.R. Rios and J.R.C. Guimarães: Mater. Res., 2008, vol. 11, pp. 103–08.

    CAS  Google Scholar 

  28. P.R. Rios and J.R.C. Guimarães: Mater. Res., 2010, vol. 13, no. 1, pp. 121–26.

    Google Scholar 

  29. J.C. Brokos and E.R. Parker: Acta Metall., 1963, vol. 11, pp. 1291–301.

    Article  Google Scholar 

  30. D.-Z. Yang, B.P.J. Sandvik, and C.M. Wayman: Metall. Trans. A, 1984, vol. 15A, pp. 1555–62.

    CAS  ADS  Google Scholar 

  31. C.A. Apple, R.N. Caron, and G. Krauss: Metall. Trans., 1974, vol. 5, pp. 593–99.

    Article  CAS  Google Scholar 

  32. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki: ISIJ Int., 2005, vol. 45, pp. 91–94.

    Article  CAS  Google Scholar 

  33. J.C. Fisher, J.H. Hollomon, and D. Turnbull: AIME Trans., 1949, vol. 185, pp. 691–700.

    Google Scholar 

  34. R.B. Godiksen, P.R. Rios, R.A. Vandermeer, S. Schmidt, and D. Juul Jensen: Scripta Mater., 2008, vol. 58, pp. 279–82.

    Article  CAS  Google Scholar 

  35. J.R.C. Guimarães and J.C. Gomes: Metall. Trans. A, 1979, vol. 10A, pp. 109–12.

    ADS  Google Scholar 

  36. J.R.C. Guimarães: Mater. Sci. Eng. A, 2008, vol. 476, pp. 106–11.

    Article  Google Scholar 

  37. M. Cohen, G.B. Olson, and P.C. Clapp: ICOMAT-1979 Proc., MIT Press, Boston, MA, 1979, pp. 1–18.

    Google Scholar 

  38. J.W. Christian: ICOMAT-1979 Proc., MIT Press, Boston, MA, 1979, pp. 220–34.

    Google Scholar 

  39. J.R.C. Guimarães and P.R. Rios: J. Mater. Sci., 2010, vol. 45, pp. 1074–77.

    Article  ADS  Google Scholar 

  40. Y. Zang, M. Jin, A.G. Khachaturyan: Acta Mater., 2007, vol. 55, pp. 565–74.

    Article  Google Scholar 

  41. R.E. Cech and D. Turnbull: Trans. AIME, 1956, vol. 206, pp. 124–32.

    Google Scholar 

  42. R.A. Vandermeer, R.A. Masumura, and B.B. Rath: Acta Metall. Mater., 1991, vol. 39, pp. 383–89.

    Article  CAS  Google Scholar 

  43. M.G. Mendiratta and G. Krauss: Metall. Trans., 1972, vol. 2, pp. 1755–60.

    Article  Google Scholar 

  44. S.M.C. Van Bohemen and J. Sietsma: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1059–68.

    Article  CAS  ADS  Google Scholar 

  45. T. Maki, K. Tsuzaki, and I. Tamura: Proc. Int. Conf. on “Martensitic Transformations,” MIT, Cambridge, MA, June 1979, pp. 22–31.

  46. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  47. S.M.C. Van Bohemen and J. Sietsma: Mater. Sci. Technol., 2009, vol. 25, pp. 1009–12.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (PRR) is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and to Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, for financial support. PRR also thanks the Humboldt Foundation for the Humboldt Research Award and Professor Günter Gottstein for his hospitality during the author’s stay at the Institut für Metallkunde and Metallphysik of RWTH–Aachen, where this work has been done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Rios.

Additional information

Manuscript submitted January 10, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães, J.R.C., Rios, P.R. Unified Model for Plate and Lath Martensite with Athermal Kinetics. Metall Mater Trans A 41, 1928–1935 (2010). https://doi.org/10.1007/s11661-010-0239-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0239-x

Keywords

Navigation