Skip to main content
Log in

Developing Processing Routes for the Equal-Channel Angular Pressing of Age-Hardenable Aluminum Alloys

  • Symposium: Mechanical Behavior of Nanostructured Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The processing of age-hardenable aluminum alloys by equal-channel angular pressing (ECAP) was investigated using three different Al-Zn-Mg alloys. The results show that it is relatively easy to conduct the ECAP at an elevated temperature of 473 K, but this leads to a weakening of the alloy rather than a strengthening. The processing by ECAP may be performed successfully at room temperature provided it is conducted fairly quickly (within ~10 minutes) after quenching from the solution treatment. It is necessary also to optimize the solution treatment conditions for each alloy composition. Under optimum conditions, good strengthening is achieved even after a single pass in ECAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981.

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  3. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 691–701.

    Article  CAS  ADS  Google Scholar 

  4. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633–40.

    Article  CAS  Google Scholar 

  5. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1997, vol. 45, pp. 4733–41.

    Article  CAS  Google Scholar 

  6. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31.

    Article  CAS  Google Scholar 

  7. S.D. Terhune, D.L. Swisher, K. Oh-ishi, Z. Horita, T.G. Langdon, and T.R. McNelley: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2173–84.

    Article  CAS  ADS  Google Scholar 

  8. A.A. Salem, T.G. Langdon, T.R. McNelley, S.R. Kalidindi, and S.L. Semiatin: Metall. Mater. Trans. A, 1996, vol. 37A, pp. 2879–91.

    Google Scholar 

  9. J. Wang, Z. Horita, M. Furukawa, M. Nemoto, N.K. Tsenev, R.Z. Valiev, Y. Ma, and T.G. Langdon: J. Mater. Res., 1993, vol. 8, pp. 2810–18.

    Article  CAS  ADS  Google Scholar 

  10. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 2973–82.

    Article  CAS  Google Scholar 

  11. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 4619–29.

    Article  CAS  Google Scholar 

  12. J. Wang, M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Eng., 1996, vol. A216, pp. 41–46.

    CAS  Google Scholar 

  13. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2503–10.

    Article  CAS  Google Scholar 

  14. D.G. Morris and M.A. Muñoz-Morris: Acta Mater., 2002, vol. 50, pp. 4047–60.

    Article  CAS  Google Scholar 

  15. C. Xu, W. Dixon, M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Lett., 2003, vol. 57, pp. 3588–92.

    Article  CAS  Google Scholar 

  16. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2003, vol. 51, pp. 6139–49.

    Article  CAS  Google Scholar 

  17. M.J. Starink, N. Gao, M. Furukawa, Z. Horita, C. Xu, and T.G. Langdon: Rev. Adv. Mater. Sci., 2004, vol. 7, pp. 1–12.

    CAS  Google Scholar 

  18. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2005, vol. 53, pp. 749–58.

    Article  CAS  Google Scholar 

  19. N. Gao, M.J. Starink, M. Furukawa, Z. Horita, C. Xu, and T.G. Langdon: Mater. Sci. Eng., 2005, vols. A410–A411, pp. 303–07.

    Google Scholar 

  20. S.C. Wang, M.J. Starink, N. Gao, C. Xu, and T.G. Langdon: Rev. Adv. Mater. Sci., 2005, vol. 10, pp. 249–55.

    CAS  Google Scholar 

  21. S.G. Chowdhury, C. Xu, and T.G. Langdon: Mater. Sci. Eng., 2008, vol. A473, pp. 219–25.

    CAS  Google Scholar 

  22. C. Xu, Z. Száraz, Z. Trojanová, P. Lukáč, and T.G. Langdon: Mater. Sci. Eng., 2008, vol. A497, pp. 206–11.

    CAS  Google Scholar 

  23. L.J. Zheng, C.Q. Chen, T.T. Zhou, P.Y. Liu, and M.G. Zeng: Mater. Charact., 2003, vol. 49, pp. 455–61.

    Article  Google Scholar 

  24. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu: Acta Mater., 2004, vol. 52, pp. 4589–99.

    Article  CAS  Google Scholar 

  25. G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, and T.G. Langdon: Acta Mater., 2009, vol. 57, pp. 3123–32.

    Article  CAS  Google Scholar 

  26. R.B. Figueiredo, Z. Duan, M. Kawasaki, and T.G. Langdon: Mater. Sci. Forum, 2010, vols. 633–634, pp. 341–52.

    Google Scholar 

  27. J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Hegedüs, and T.G. Langdon: Mater. Sci. Eng., 2007, vols. A460–A461, pp. 77–85.

    Google Scholar 

  28. N.Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, Z. Horita, C. Xu, and T.G. Langdon: Mater. Sci. Forum, 2008, vols. 584–586, pp. 501–06.

    Article  Google Scholar 

  29. N.Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Eng., 2009, vol. A516, pp. 248–52.

    CAS  Google Scholar 

  30. C.Y. Nam, J.H. Han, Y.H. Chung, and M.C. Shin: Mater. Sci. Eng., 2003, vol. A347, pp. 253–57.

    CAS  Google Scholar 

  31. D.P. DeLo and S.L. Semiatin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1391–1402.

    Article  CAS  ADS  Google Scholar 

  32. S.L. Semiatin, V.M. Segal, R.F. Goforth, N.D. Frey, and D.P. DeLo: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1425–35.

    Article  CAS  Google Scholar 

  33. S.L. Semiatin and D.P. DeLo: Mater. Design, 2000, vol. 21, pp. 311–22.

    Article  CAS  Google Scholar 

  34. K. Xia, J.T. Wang, X. Wu, G. Chen, and M. Gurvan: Mater. Sci. Eng., 2005, vols. 410–411, pp. 324–27.

    Google Scholar 

  35. A. Yamashita, D. Yamaguchi, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2000, vol. A287, pp. 100–06.

    CAS  Google Scholar 

  36. D. Yamaguchi, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1999, vol. 41, pp. 791–96.

    Article  CAS  Google Scholar 

  37. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 36, pp. 143–46.

    Google Scholar 

  38. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A257, pp. 328–32.

    CAS  Google Scholar 

  39. T.G. Langdon: Mater. Sci. Eng., 2007, vol. A462, pp. 3–11.

    CAS  Google Scholar 

  40. N.Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, and T.G. Langdon: Mater. Sci. Forum, 2010, vols. 633–634, pp. 527–34.

    Google Scholar 

  41. M. Kawasaki, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2009, vol. A524, pp. 143–50.

    CAS  Google Scholar 

  42. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Adv. Mater., 2006, vol. 18, pp. 34–39.

    Article  CAS  Google Scholar 

  43. L.F. Mondolfo, N.A. Gjostein, and D.W. Levinson: Trans. Am. Inst. Min (Metall.) Eng., 1956, vol. 206, pp. 1378–85.

    Google Scholar 

  44. G. Thomas and J. Nutting: J. Inst. Met., 1959–1960, vol. 88, pp. 81–90.

  45. J.D. Embury and R.B. Nicholson: Acta Metall., 1965, vol. 13, pp. 403–17.

    Article  CAS  Google Scholar 

  46. L.F. Mondolfo: Int. Metall. Rev., 1971, vol. 153, pp. 95–124.

    Google Scholar 

  47. H. Löffler, I. Kovács, and J. Lendvai: J. Mater. Sci., 1983, vol. 18, pp. 2215–40.

    Article  ADS  Google Scholar 

  48. I.J. Polmear: Light Alloys, 3rd ed., Butterworth-Heinemann, London, 1995.

    Google Scholar 

  49. K. Venkateswarlu, M. Ghosh, A.K. Ray, C. Xu, and T.G. Langdon: Mater. Sci. Eng. A, 2008, vol. 485, pp. 476–80.

    Article  Google Scholar 

  50. J.H. Han, H.K. Seok, Y.H. Chung, M.C. Shin, and J.C. Lee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 342–47.

    Article  Google Scholar 

  51. Y. Huang and P.B. Prangnell: Scripta Mater., 2007, vol. 56, pp. 333–36.

    Article  CAS  Google Scholar 

  52. Z.H. Chen, Y.Q. Cheng, and W.J. Xia: Mater. Manufact. Process., 2007, vol. 22, pp. 51–56.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the United States Army Research Office under Grant No. W911NF-08-1-0201 (ZCD, CX, TGL) and, in part, by the Hungarian Scientific Research Fund, OTKA, under Grant No. K67692 (NQC). In addition, NQC is grateful for the support of the Hungarian–American Enterprise Scholarship Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Additional information

This article is based on a presentation given in the symposium entitled “Mechanical Behavior of Nanostructured Materials,” which occurred during the TMS Spring Meeting in San Francisco, CA, February 15–19, 2009, under the auspices of TMS, the TMS Electronic, Magnetic, and Photonic Materials Division, the TMS Materials Processing and Manufacturing Division, the TMS Structural Materials Division, the TMS Nanomechanical Materials Behavior Committee, the TMS Chemistry and Physics of Materials Committee, and the TMS/ASM Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Z.C., Chinh, N.Q., Xu, C. et al. Developing Processing Routes for the Equal-Channel Angular Pressing of Age-Hardenable Aluminum Alloys. Metall Mater Trans A 41, 802–809 (2010). https://doi.org/10.1007/s11661-009-0020-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0020-1

Keywords

Navigation