Skip to main content
Log in

Cottrell Cosegregations of Carbon and Hydrogen: Characteristics and Role in the Strain Aging and Embrittlement of Steels

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This study investigates the characteristics of phase-like Cottrell atmospheres, which are carbohydride-like cosegregations of carbon and hydrogen, present at dislocations within the martensitic and ferritic components of high-strength austenitic steel with transformation-induced plasticity. The research addresses concerns related to aging, hydrogen embrittlement, and the degradation of certain steels during operational use. A key focus is placed on the development of an in-depth processing technique and analysis of the thermal-desorption spectra of hydrogen across several steel samples and iron (used as a reference material). The investigation involves employing thermodynamic analysis and a methodology for determining the thermodynamic parameters, including hydrogen concentrations, activation energies, and desorption-process rate constants. Additionally, the study aims to identify the nature of hydrogen traps by analyzing comprehensive thermal-desorption data. These findings are then compared with theoretical data and corresponding information obtained through three-dimensional atomic-probe tomography. The results demonstrate the potential formation of Cottrell carbohydride-like cosegregations of carbon and hydrogen at dislocations in both martensitic and ferritic phases within high-strength austenitic steel exhibiting high plasticity due to transformation. The research provides novel insights into the binding energies of hydrogen associated with carbohydride-like cosegregations of carbon and hydrogen along dislocations in these martensitic and ferritic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. A. Marquis and J. M. Hyde, Mater. Sci. Eng., R 69 (4–5), 37 (2010). https://www.doi.org/10.1016/j.mser.2010.05.001

  2. P. Pareige, E. Cadel, X. Sauvage, B. Deconihout, D. Blavette, and D. Mangelinck, Int. J. Nanotechnol. 5, 592 (2008). https://www.doi.org/10.1504/IJNT.2008.018684

    Article  CAS  Google Scholar 

  3. D. Blavette and S. Duguay, Eur. Phys. J. Appl. Phys. 68, 10101 (2014). https://www.doi.org/10.1051/epjap/2014140060

    Article  Google Scholar 

  4. M. Herbig, P. Choi, and D. Raabe, Ultramicroscopy 153, 32 (2015). https://www.doi.org/10.1016/j.ultramic.2015.02.003

    Article  CAS  Google Scholar 

  5. D. Blavette, E. Cadel, A. Fraczkiewicz, and A. Menand, Science 286, 2317 (1999). https://www.doi.org/10.1126/science.286.5448.2317

    Article  CAS  Google Scholar 

  6. E. Cadel, D. Lemarchand, A.-S. Gay, A. Fraczkiewicz, and D. Blavette, Scr. Mater. 41, 421 (1999). https://www.doi.org/10.1016/S1359-6462(99)00106-2

    Article  CAS  Google Scholar 

  7. O. Calonne, A. Fraczkiewicz, and F. Louchet, Scr. Mater. 43, 69 (2000). https://www.doi.org/10.1016/S1359-6462(00)00367-5

    Article  CAS  Google Scholar 

  8. E. Cadel, S. Launois, A. Fraczkiewicz, and D. Blavette, Philos. Mag. Lett. 80, 725 (2000). https://www.doi.org/10.1080/09500830050192945

    Article  CAS  Google Scholar 

  9. D. Blavette, A. Fraczkiewicz, and E. Cadel, J. Phys. IV 10, 111 (2000). https://www.doi.org/10.1051/jp4:2000619

    Google Scholar 

  10. E. Cadel, A. Fraczkiewicz, and D. Blavette, Mater. Sci. Eng., A 309–310, 32 (2001). https://www.doi.org/10.1016/S0921-5093(00)01688-9

    Article  Google Scholar 

  11. A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc., Sect. A 62, 49 (1949).

    Google Scholar 

  12. A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Clarendon, Oxford, 1953).

    Google Scholar 

  13. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

  14. Yu. S. Nechaev and A. Ochsner, Defect Diffus. Forum 391, 246 (2019). https://www.doi.org/10.4028/www.scientific.net/DDF. 391.246

    Google Scholar 

  15. J. Wilde, A. Cerezo, and G. D. W. Smith, Scr. Mater. 43, 39 (2000). https://www.doi.org/10.1016/S1359-6462(00)00361-4

    Article  CAS  Google Scholar 

  16. R. W. Kahn, The Coming of Materials Science, Pergamon Materials Series (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  17. Yu. S. Nechaev, Phys.—Usp. 54, 465 (2011). https://doi.org/10.3367/UFNe.0181.201105b.0483

    Article  CAS  Google Scholar 

  18. Yu. S. Nechaev, Phys.—Usp. 51, 681 (2008). https://doi.org/10.1070/PU2008v051n07ABEH006570

    Article  CAS  Google Scholar 

  19. Yu. S. Nechaev, Materialovedenie, No. 3, 50 (2009).

    Google Scholar 

  20. V. N. Chuvil’deev, Materialovedenie, No. 4, 60 (2009).

  21. Yu. S. Nechaev, Materialovedenie, No. 6, 55 (2009).

    Google Scholar 

  22. Yu. S. Nechaev, Phys.–Usp. 44, 1189 (2001). https://doi.org/10.1070/PU2001v044n11ABEH000973

    Article  CAS  Google Scholar 

  23. Yu. S. Nechaev and G. A. Filippov, Defect Diffus. Forum 194–199, 1099 (2001). https://www.doi.org/10.4028/www.scientific.net/DDF.1 94-199.1099

  24. Yu. S. Nechaev, Solid State Phenom. 138, 91 (2008). https://www.doi.org/10.4028/www.scientific.net/ SSP.138.91

    Article  CAS  Google Scholar 

  25. Yu. S. Nechaev, A. A. Burzhanov, and G. A. Filippov, Adv. Mater. Sci. 7, 166 (2007).

    Google Scholar 

  26. Yu. S. Nechaev, D. V. Iourtchenko, J. G. Hirschberg, and T. N. Veziroglu, Int. J. Hydrogen Energy 29, 1421 (2004). https://www.doi.org/10.1016/j.ijhydene.2004.01.011

    Article  CAS  Google Scholar 

  27. Yu. S. Nechaev, Defect Diffus. Forum 385, 120 (2018). https://www.doi.org/10.4028/www.scientific.net/DDF. 385.120

    Google Scholar 

  28. R. A. Swalin, Thermodynamics of Solids (Wiley, New York, 1961; Metallurgiya, Moscow, 1968).

  29. R. Kirchheim, Prog. Mater. Sci. 32, 261 (1988). https://www.doi.org/10.1016/0079-6425(88)90010-2

    Article  CAS  Google Scholar 

  30. R. Kirchheim, Acta Metall. 29, 835 (1981). https://www.doi.org/10.1016/0001-6160(81)90126-7

    Article  CAS  Google Scholar 

  31. R. Oriani, Acta Mater. 18, 147 (1970). https://www.doi.org/10.1016/0001-6160(70)90078-7

    Article  CAS  Google Scholar 

  32. Yu. S. Nechaev, I. G. Rodionova, K. A. Udod, A. A. Nemtinov, and A. V. Mitrofanov, Probl. Chern. Metall. Materialoved., No. 4, 5 (2013).

  33. Yu. S. Nechaev, N. M. Alexandrova, A. O. Cheretaeva, V. L. Kuznetsov, A. Öchsner, E. K. Kostikova, and Yu. V. Zaika, Int. J. Hydrogen Energy 45, 25030 (2020). https://www.doi.org/10.1016/j.ijhydene.2020.06.242

    Article  CAS  Google Scholar 

  34. Yu. S. Nechaev, N. M. Alexandrova, N. A. Shurygina, A. O. Cheretaeva, E. A. Denisov, and E. K. Kostikova, Bull. Russ. Acad. Sci.: Phys. 85, 701 (2021). https://www.doi.org/10.3103/S1062873821070169

  35. Yu. V. Zaika, E. K. Kostikova, and Yu. S. Nechaev, Tech. Phys. 91, 210 (2021). https://www.doi.org/10.1134/S1063784221020250

    Article  Google Scholar 

  36. T. Depover and K. Verbeken, Int. J. Hydrogen Energy 43, 3050 (2018). https://www.doi.org/10.1016/j.ijhydene.2017.12.109

    Article  CAS  Google Scholar 

  37. J. Lee, T. Lee, Y. J. Kwon, D. J. Mun, J. Y. Yoo, and C. S. Lee, Corros. Rev. 33, 433 (2015). https://www.doi.org/10.1515/corrrev-2015-0052

    Article  CAS  Google Scholar 

  38. T. Depover, O. Monbaliu, E. Wallaert, and K. Verbeken, Int. J. Hydrogen Energy 40, 16977 (2015). https://www.doi.org/10.1016/j.ijhydene.2015.06.157

    Article  CAS  Google Scholar 

  39. H. Kissinger, Anal. Chem. 29, 1702 (1957). https://www.doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  40. E. Legrand, A. Oudriss, C. Savall, J. Bouhattate, and X. Feaugas, Int. J. Hydrogen Energy 40, 2871 (2015). https://www.doi.org/10.1016/j.ijhydene.2014.12.069

    Article  CAS  Google Scholar 

  41. A. Drexler, L. Vandewalle, T. Depover, K. Verbeken, and J. Domitner, Int. J. Hydrogen Energy 46, 39590 (2021). https://www.doi.org/10.1016/j.ijhydene.2021.09.171

    Article  CAS  Google Scholar 

  42. R. Kirchheim, Metall. Mater. Trans., A 47, 672 (2016). https://www.doi.org/10.1007/s11661-015-3236-2

    Article  CAS  Google Scholar 

  43. D. P. Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Mater. Sci. Eng., A 551, 50 (2012). https://www.doi.org/10.1016/j.msea.2012.04.078

    Article  Google Scholar 

  44. D. P. Escobar, T. Depover, L. Duprez, K. Verbeken, and M. Verhaege, Acta Mater. 60, 2593 (2012). https://www.doi.org/10.1016/j.actamat.2012.01.026

    Article  Google Scholar 

  45. H. Hagi, Mater. Trans. JIM 35, 112 (1994). https://www.doi.org/10.2320/matertrans1989.35.112

  46. P. Kedzierzawski, R. A. Oriani, J. P. Hirth, and M. Smialowski, Acta Metall. Mater. 39, 271 (1985).

    Google Scholar 

  47. N. A. Kulabukhova, Candidate’s Dissertation in Mathematics and Physics (Altai State Tech. Univ., Barnaul, 2014).

  48. A. V. Ganeev, Candidate’s Dissertation in Mathematics and Physics (Ufa State Aviat. Tech. Univ., Ufa, 2019).

  49. A. R. Mishet’yan, Candidate’s Dissertation in Engineering (Central Res. Inst. Ferrous Metall., Moscow, 2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Nechaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechaev, Y.S., Denisov, E.A., Shurygina, N.A. et al. Cottrell Cosegregations of Carbon and Hydrogen: Characteristics and Role in the Strain Aging and Embrittlement of Steels. J. Surf. Investig. 17, 1395–1404 (2023). https://doi.org/10.1134/S1027451023060393

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060393

Keywords:

Navigation