Skip to main content

Advertisement

Log in

Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hydrogen-uptake capacity and mobility in ultrahigh-strength AERMET 100 are characterized for various electrochemical charging and baking conditions. From thermal desorption spectroscopy, the apparent hydrogen diffusivity (D H < 3 × 10−8 cm2/s at 23 °C) is over tenfold less than the values typical of tempered martensitic steels such as AISI 4130. The value of D H decreases with decreasing temperature below 200 °C, with a relatively high apparent activation energy for diffusion of 17.7 to 18.8 ± 0.2 kJ/mol at the 95 pct confidence level. The value of D H also decreases with decreasing diffusible H concentration from less-severe charging or increased baking. Potentiostatic charging in saturated Ca(OH)2 produced total and diffusible H concentrations in AERMET 100 which increase with (H+/H) overpotential and are significantly higher than results for AISI 4130 steel under the same conditions. A significant H concentration was produced by zero overpotential deposition. These characteristics are explained by extensive reversible and irreversible H trapping involving at least three unique trap states in the ultrafine AERMET 100 microstructure. The former likely include coherent M2C carbides, soluble Ni, or precipitated austenite, and the latter include larger incoherent M x C y or martensite lathed-packet interfaces. Baking at 23 °C and 200 °C removes H from the lowest binding-energy sites, but results in reduced D H levels to prolong outgassing time. Additionally, substantial H was retained in stronger trap states. These trapping effects are pertinent to hydrogen embrittlement of AERMET 100 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Turnbull, M.W. Carroll, and D.H. Ferriss: Acta Metall., 1989, vol. 37, pp. 2039–46.

    Article  CAS  Google Scholar 

  2. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  3. A.J. Kumnick and H.H. Johnson: Metall. Trans., 1974, vol. 5, pp. 1199–1206.

    CAS  Google Scholar 

  4. S. Hinotani, Y. Ohmori, and F. Terasaki: Mater. Sci. Engineer., 1985, vol. 76, pp. 57–69.

    Article  CAS  Google Scholar 

  5. G.M. Pressouyre and F.M. Faure: in Hydrogen Embrittlement: Prevention and Control, ASTM STP 962, L. Raymond, ed., ASTM, Philadelphia, PA, 1988, pp. 353–71.

    Google Scholar 

  6. C.A. Wert: in Topics in Applied Physics—Hydrogen in Metals II, G. Alefeld and J. Volkl, editors, Springer-Verlag, New York, NY, 1978, pp. 305–30.

    Google Scholar 

  7. R. Valentini and A. Solina: Mater. Sci. Technol., 1994, vol. 10, pp. 908–14.

    CAS  Google Scholar 

  8. P.K. Subramanyan: in Comprehensive Treatise of Electrochemistry Volume 4: Electrochemical Materials Science, J.O.M. Bockris et al., eds., Plenum Press, New York, NY, 1981, pp. 411–62.

    Google Scholar 

  9. R.P. Gangloff: in Corrosion Prevention and Control, M. Levy and S. Isserow, eds., United States Army Materials Technology Laboratory, Watertown, MA, 1986, pp. 64–111.

    Google Scholar 

  10. C.D. Kim and A.W. Loginow: Corrosion, 1968, vol. 24, pp. 313–18.

    CAS  Google Scholar 

  11. H.H. Johnson and R.W. Lin: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA, 1980, pp. 3–25.

    Google Scholar 

  12. G.M. Evans and E.C. Rollason: J. Iron Steel Institute, 1969, vol. 207, pp. 1591–98.

    CAS  Google Scholar 

  13. M. Wang and P.G. Shewmon: in Hydrogen Embrittlement: Prevention and Control, ASTM STP 962, L. Raymond, ed., ASTM, Philadelphia, PA, 1988, pp. 117–24.

    Google Scholar 

  14. R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

  15. L.S. Darken and R.P. Smith: Corrosion, 1949, vol. 5, pp. 1–16.

    Google Scholar 

  16. G.M. Pressouyre: in Current Solutions to Hydrogen Problems in Steels, C.G. Interrante and G.M. Pressouyre, eds., ASM INTERNATIONAL, Materials Park, OH, 1982, pp. 18–34.

    Google Scholar 

  17. G.M. Pressouyre: Metall. Trans. A, 1983, vol. 14A, pp. 2189–93.

    CAS  Google Scholar 

  18. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  Google Scholar 

  19. A.W. Thompson: in Environmental Degradation of Engineering Materials, M.R. Louthan and R.P. McNitt, eds., Virginia Polytechnic Institute, Blacksburg, VA, 1977, pp. 3–17.

    Google Scholar 

  20. T. Asaoka, G. Lapasset, M. Aucouturier, and P. Lacombe: Corrosion, 1978, vol. 34, pp. 39–47.

    CAS  Google Scholar 

  21. A.J. Kumnick and H.H. Johnson: Acta Metall., 1980, vol. 28, pp. 33–39.

    Article  CAS  Google Scholar 

  22. G.M. Pressouyre and I.M. Bernstein: Corrosion Sci., 1978, vol. 18, pp. 819–33.

    Article  CAS  Google Scholar 

  23. R. Gibala and A.J. Kumnick: in Hydrogen Embrittlement and Stress Corrosion Cracking, R. Gibala and R.F. Hehemann, eds., ASM INTERNATIONAL, Materials Park, OH, 1984, pp. 61–77.

    Google Scholar 

  24. J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards: Metall. Trans., 1976, vol. 7A, pp. 821–29.

    CAS  Google Scholar 

  25. F. Gehrmann, H.J. Grabke, and E. Riecke: in Hydrogen Transport and Cracking in Metals, A. Turnbull, ed., The University Press, London, 1995, pp. 216–26.

    Google Scholar 

  26. G.M. Pressouyre: Metall. Trans. A, 1979, vol. 10A, pp. 1571–72.

    CAS  Google Scholar 

  27. P.M. Novotny and T.J. McCaffrey: Aerotech ’92, Society of Automotive Engineers, Inc., Warrendale, PA, 1992.

    Google Scholar 

  28. P.M. Novotny: Gilbert R. Speich Symp.—Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products, ISS, Warrendale, PA, 1992, pp. 215–36.

    Google Scholar 

  29. R. Ayer and P.M. Machmeier: Metall. Trans. A, 1993, vol. 24A, pp. 1943–55.

    CAS  Google Scholar 

  30. C.H. Yoo, H.M. Lee, J.W. Chan, and J.W. Morris: Metall. Mater. Trans., A, 1996, vol. 27A, pp. 3466–72.

    Article  CAS  Google Scholar 

  31. C.J. Kuehmann: Ph.D. Dissertation, Northwestern University, Evanston, IL, 1994.

    Google Scholar 

  32. G.M. Pressouyre: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA, 1981, pp. 27–36.

    Google Scholar 

  33. W.W. Gerberich, T. Livne, X.-F. Chen, and M. Kaczorowski: Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.

    CAS  Google Scholar 

  34. R.P. Gangloff: in Hydrogen Effects on Material Behavior, N.R. Moody et al., eds., TMS, Warrendale, PA, 2001, in press.

    Google Scholar 

  35. R.A. Oriani: Fundamental Aspects of Stress Corrosion Cracking, NACE, Houston, TX, 1969, pp. 32–50.

    Google Scholar 

  36. K. Yamakawa, S. Yonezawa, and S. Yoshizawa: Int. Congr. on Metallic Corrosion, National Research Council, Toronto, 1984, pp. 254–61.

    Google Scholar 

  37. G.M. Pressouyre and I.M. Bernstein: Acta Metall., 1979, vol. 27, pp. 89–100.

    Article  CAS  Google Scholar 

  38. M.F. Stevens and I.M. Bernstein: Metall. Trans. A, 1985, vol. 16A, pp. 1879–86.

    CAS  Google Scholar 

  39. M.J. Morgan and C.J. McMahon Jr.: Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 608–40.

    Google Scholar 

  40. B.D. Craig: Metall. Trans. A, 1982, vol. 13A, pp. 1099–1102.

    CAS  Google Scholar 

  41. J.R. Scully, J.A. Van Den Avyle, M.J. Cieslak, J. Romig, and C.R. Hills: Metall. Trans. A, 1991, vol. 22A, pp. 2429–43.

    CAS  Google Scholar 

  42. J.R. Scully, M.J. Cieslak, and J.A. Van Den Avyle: Scripta Metall. Mater., 1994, vol. 31, pp. 125–30.

    Article  CAS  Google Scholar 

  43. Alloy Data-AerMet® 100 Alloy, Carpenter Technology Corporation, Reading, PA, Carpenter Steel Division, 1992.

  44. R.P. Gangloff: Metall. Trans. A, 1985, vol. 16A, pp. 953–69.

    CAS  Google Scholar 

  45. B.P. Pound: Acta Metall., 1998, vol. 46, pp. 5733–43.

    CAS  Google Scholar 

  46. J. Crank: The Mathematics of Diffusion, Oxford University Press, Inc., New York, NY, 1975, p. 414.

    Google Scholar 

  47. M.A. Gaudett: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1997.

    Google Scholar 

  48. F. Iacoviello, J. Galland, and M. Habashi: Corr. Sci., 1998, vol. 40, pp. 1281–93.

    Article  CAS  Google Scholar 

  49. P. Shewmon: Diffusion in Solids, The Minerals, Metals, & Materials Society, Warrendale, PA, 1989, pp. 9–51.

    Google Scholar 

  50. M.L. Hill and E.W. Johnson: Acta Metall., 1955, vol. 3, pp. 566–71.

    Article  CAS  Google Scholar 

  51. D.P. Woodruff and T.A. Delchar: Modern Techniques of Surface Science, Cambridge University Press, Cambridge, United Kingdom, 1986, p. 284.

    Google Scholar 

  52. J.J. DeLuccia and D.A. Berman: in Electrochemical Corrosion Testing, ASTM STP 727, F. Mansfeld and U. Bertocci, eds., ASTM, Philadelphia, PA, 1981, pp. 256–73.

    Google Scholar 

  53. 1999 Annual Book of ASTM Standards Vol. 3.06, ASTM, Philadelphia, PA, 1999, pp. 398–400.

  54. M.R. Louthan Jr., R.G. Derrick, J.A. Donovan, and G.R. Caskey, Jr.: in Effect of Hydrogen on Behavior of Materials, A.W. Thompson and I.M. Bernstein, eds. TMS, Warrendale, PA, 1976, pp. 337–47.

    Google Scholar 

  55. W.J. Kass: in Effect of Hydrogen on Behavior of Materials, A.W. Thompson and I.M. Bernstein, eds., TMS, Warrendale, PA, 1976, pp. 327–36.

    Google Scholar 

  56. H.E. Kissinger: Analytical Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  57. E.V. Kornelsen and A.A. van Gorkum: Vacuum, 1981, vol. 31, pp. 99–111.

    Article  Google Scholar 

  58. J.B. Boodey and V.S. Agarwala: Corrosion 87, NACE, Houston, TX, 1987.

    Google Scholar 

  59. D.A. Berman: Mater. Performance, 1985, vol. 24, pp. 36–41.

    CAS  Google Scholar 

  60. R.L.S. Thomas: Masters Thesis, 2000, University of Virginia, Charlottesville, VA.

    Google Scholar 

  61. A.J. Griffiths and A. Turnbull: Corr. Sci., 1995, vol. 37, pp. 1879–81.

    Article  CAS  Google Scholar 

  62. H.H. Johnson, N.R. Quick, and A.J. Kumnick: Scripta Metall., 1979, vol. 13, pp. 67–72.

    Article  CAS  Google Scholar 

  63. N.R. Quick and H.H. Johnson: Acta Metall., 1978, vol. 26, pp. 903–07.

    Article  CAS  Google Scholar 

  64. H.G. Nelson and J.E. Stein: Report No. NASA TN D-7265, National Aeronautics and Space Administration, Washington, DC, 1973.

    Google Scholar 

  65. M.A.V. Devanthan and Z. Stachurski: Proc. R. Soc. London, 1962, vol. 270A, pp. 90–102.

    Google Scholar 

  66. R.S. Lillard, D.G. Enos, and J.R. Scully: Corrosion, 2000, vol. 56, pp. 1119–32.

    Article  CAS  Google Scholar 

  67. W. Beck, J.O.M. Bockris, M.A. Genshaw, and P.K. Subramanyan: Metall. Trans., 1971, vol. 2, pp. 883–88.

    Google Scholar 

  68. J.O.M. Bockris, M.A. Genshaw, and M. Fullenwider: Electrochimica Acta, 1970, vol. 15, pp. 47–60.

    Article  CAS  Google Scholar 

  69. G.R. Speich, D.S. Dabkowski, and L.F. Porter: Metall. Trans., 1973, vol. 4, pp. 303–15.

    CAS  Google Scholar 

  70. A. Zielinski, E. Lunarska, and M. Smialowski: Acta Metall., 1977, vol. 25, pp. 551–56.

    Article  CAS  Google Scholar 

  71. P. Kedzierzawski: in Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 271–320.

    Google Scholar 

  72. I.M. Bernstein and G.M. Pressouyre: in Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 641–711.

    Google Scholar 

  73. D.L. Johnson, G. Krauss, J.K. Wu, and K.P. Tang: Metall. Trans. A, 1987, vol. 18A, pp. 717–21.

    CAS  Google Scholar 

  74. C. Paes de Oliveira, M. Aucouturier, and L. Lacombe: Corrosion, 1980, vol. 36, pp. 53–59.

    Google Scholar 

  75. R. Valentini, F. D’Errico, D.M. De Micheli, and A. Solina: in Hydrogen Transport and Cracking in Metals, A. Turnbull, ed., The University Press, London, 1995, pp. 312–19.

    Google Scholar 

  76. R.O. Ritchie, V.F. Castro Cedeno, V.F. Zackay, and E.R. Parker: Metall. Trans. A, 1978, vol. 9A, pp. 35–40.

    CAS  Google Scholar 

  77. G. Krauss: Steels: Heat Treatment and Processing Principles, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 57–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R.L.S., Li, D., Gangloff, R.P. et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel. Metall Mater Trans A 33, 1991–2004 (2002). https://doi.org/10.1007/s11661-002-0032-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0032-6

Keywords

Navigation