Skip to main content

Advertisement

Log in

The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal desorption spectroscopy (TDS) was utilized to identify several metallurgical states in an Al -2Li - 2Cu-0.1Zr (wt pct) alloy, which trap absorbed hydrogen. Six distinct metallurgical desorption states for hydrogen were observed for tempers varying from the T3 to peakaged condition. Lower energy thermal desorption states were correlated with interstitial sites, lithium in solid solution, and δ′ (Al3Li) precipitates. These states have trap-binding energies ≤25.2 kJ/mol. Under the charging conditions utilized, approximately 4 pct of the total (e.g., trapped and lattice) hydrogen content was associated with interstitial sites, consistent with the view that the intrinsic lattice solubility of hydrogen in aluminum is very low. In contrast, dislocations, grain boundaries, and T1 (Al2CuLi) particles were found to be higher energy-trap states with trap-binding energies ≥31.7 kJ/mol. Approximately 78 pct of all absorbed hydrogen occupied these states. Moreover, greater than 13 pct of the available trap sites at grain boundaries were occupied. Such a high hydrogen coverage at grain-boundary sites supports the notion that hydrogen contributes to grain-boundary environmental cracking in Al-Li-Cu-Zr alloys. Also, it points out the error in assuming that hydrogen cannot play a major role in cracking of Al-based alloys due to the low lattice solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gray, N.J.H. Holroyd, and W.S. Miller: 1st Int. SAMPE Metals and Metals Processing Conf., SAMPE, Covina, CA, 1987, vol. 1, pp. 339–51.

    Google Scholar 

  2. E.L. Colvin, S.J. Martha, and R.K. Wyss: Aluminum Alloys—Physical and Mechanical Properties, EMAS Ltd., London, 1986, vol. 3, pp. 1853–67.

    Google Scholar 

  3. R.G. Buchheit and G.E. Stoner: Aluminum Lithium Alloys V, MCE Publications Ltd., Birmingham, United Kingdom, 1989, pp. 1347–56.

    Google Scholar 

  4. J.P. Moran, R.G. Buchheit, and G.E. Stoner: Parkins Symp. on Fundamental Aspects of Stress Corrosion Cracking, TMS, Warrendale, PA, 1992, pp. 159–70.

    Google Scholar 

  5. E.I. Meletis: Parkins Symp. on Fundamental Aspects of Stress Corrosion Cracking, TMS, Warrendale, PA, 1992, pp. 353–70.

    Google Scholar 

  6. R.G. Buchheit, Jr., J.P. Moran, and G.E. Stoner: Corrosion, 1990, vol. 46, pp. 610–17.

    CAS  Google Scholar 

  7. E.I. Meletis and W. Huang: Mater. Sci. Eng. A, 1991, vol. A148, pp. 197–209.

    CAS  Google Scholar 

  8. R. Balasubramaniam, D.J. Duquette, and K. Rajan: Acta Metall., 1991, vol. 39, pp. 2597–2605.

    Article  CAS  Google Scholar 

  9. R. Balasubramaniam, D.J. Duquette, and K. Rajan: Acta Metall., 1991, vol. 39, pp. 2607–13.

    Article  CAS  Google Scholar 

  10. C. Kumai, J. Kusinski, G. Thomas, and T.M. Devine: Corrosion, 1989, vol. 45, pp. 294–302.

    CAS  Google Scholar 

  11. R.S. Piascik and R.P. Gangloff: Metall. Trans. A, 1991, vol. 22A, pp. 2415–28.

    CAS  Google Scholar 

  12. G. Ehrlich: J. Phys. Chem., 1956, vol. 60, pp. 1388–1400.

    Article  CAS  Google Scholar 

  13. P.A. Redhead: Vacuum, 1962, vol. 12, pp. 203–11.

    Article  CAS  Google Scholar 

  14. G. Carter: Vacuum, 1962, vol. 12, pp. 245–54.

    Article  CAS  Google Scholar 

  15. J.Y. Lee, J.L. Lee, and W.Y. Choo: Current Solutions to Hydrogen Problems in Steels, ASM, Metals Park, OH, 1982, pp. 423–27.

    Google Scholar 

  16. E.V. Kornelsen and A.A. van Gorkum: Vacuum, 1981, vol. 31, pp. 99–111.

    Article  Google Scholar 

  17. P.N. Anyalebechi: Light Metals 1991, TMS, Warrendale, PA, 1991, pp. 1025–46.

    Google Scholar 

  18. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1981, vol. 12A, pp. 835–44.

    Google Scholar 

  19. M. Iino: Acta Metall., 1982, vol. 30, pp. 367–75.

    Article  CAS  Google Scholar 

  20. S.W. Smith and J.R. Scully: Hydrogen Effects in Materials, TMS, Warrendale, PA, 1996, pp. 131–40.

    Google Scholar 

  21. ASM Specialty Handbook, Aluminum and Aluminum Alloys, J.R. Davis, ed.; ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 121–42.

    Google Scholar 

  22. J.A. Wert, N.E. Paton, C.H. Hamilton, and M.H. Mahoney: Metall. Trans. A, 1981, vol. 12A, pp. 1267–76.

    Google Scholar 

  23. J. White, W.S. Miller, I.G. Palmer, R. Davis, and T.S. Saini: Aluminum-Lithium III, Institute of Metals, London, 1985, pp. 530–38.

    Google Scholar 

  24. A. Csanady, K. Papp, and E. Pasztor: Mater. Sci. Eng., 1981, vol. 48, pp. 35–39.

    Article  CAS  Google Scholar 

  25. K. Papp and E. Kovacs-Cseteni: Scrip. Metall., 1981, vol. 15, pp. 161–64.

    Article  CAS  Google Scholar 

  26. T. Ishikawa and R.B. McLellan: Acta Metall., 1986, vol. 34 (6), pp. 1091–95.

    Article  CAS  Google Scholar 

  27. J. Albrecht, I.M. Bernstein, and A.W. Thompson: Metall. Trans. A, 1982, vol. 13A, pp. 811–20.

    Google Scholar 

  28. S.W. Smith: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1995.

    Google Scholar 

  29. D.P. Woodruff and T.A. Delchar: Modern Techniques of Surface Science, Cambridge University Press, Cambridge, United Kingdom, 1986, pp. 279–99.

    Google Scholar 

  30. K. Ono and M. Meshii: Acta Metall., 1992, vol. 40, pp. 1357–64.

    Article  CAS  Google Scholar 

  31. R.A. Outlaw, D.T. Peterson, and F.A. Schmidt: Metall. Trans. A, 1981, vol. 12A, pp. 1809–60.

    Google Scholar 

  32. P.N. Anyalebechi: Metall. Trans. B, 1990, vol. 21B, pp. 649–54.

    CAS  Google Scholar 

  33. H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  34. P.N. Anyalebechi: Alcoa Technical Center, Alcoa Center, PA, unpublished research, 1994.

  35. P.N. Anyalebechi: Light-Weight Alloys for Aerospace Applications, TMS, Warrendale, PA, 1989, pp. 249–68.

    Google Scholar 

  36. W.S. Miller, J. White, and D.J. Lloyd: Aluminum Alloys—Physical and Mechanical Properties, EMAS Ltd., London, 1986, pp. 1799–1836.

    Google Scholar 

  37. R.J. Rioja, P.E. Bretz, R.R. Sawtell, W.H. Hunt, and E.A. Ludwicjak: Aluminum Alloys—Physical and Mechanical Properties, EMAS Ltd., London, 1986, pp. 1781–97.

    Google Scholar 

  38. K.V. Jata and E.A. Starke, Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    CAS  Google Scholar 

  39. J.M. Papazian: Thermal Analysis in Metallurgy, TMS, Warrendale, PA, 1992, pp. 259–78.

    Google Scholar 

  40. H.K. Birnbaum, C. Buckley, F. Zeides, E. Sirois, P. Rozenak, S. Spooner, and J.S. Lin: J. Alloys Compds., 1997, vols. 253–254, pp. 260–64.

    Article  Google Scholar 

  41. C.E. Ransley and H. Neufeld: J. Inst. Met., 1948, vol. 74, pp. 599–620.

    CAS  Google Scholar 

  42. R. Edwards and W. von Eichenauer: Scrip. Metall., 1980, vol. 14, pp. 971–73.

    Article  CAS  Google Scholar 

  43. G.M. Pressouyre: Metall. Trans. A, 1979, vol. 10A, pp. 1571–73.

    CAS  Google Scholar 

  44. R.E. Reed-Hill: Physical Metallurgy Principles, 2nd ed., PWS Engineering, Boston, MA, 1973, pp. 274–77.

    Google Scholar 

  45. R.J. Rioja and E.A. Ludwiczak: Proc. 3rd Int. Al-Li Conf., Oxford, United Kingdom, 1985, pp. 471–82.

  46. R.J. Kilmer: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1994.

    Google Scholar 

  47. C.P. Blankenship, Jr., E. Hornbogen, and E.A. Starke, Jr.: Mater. Sci. Eng. A, 1993, vol. A169, pp. 33–41.

    CAS  Google Scholar 

  48. A. Turnbull, R.B. Hutchings, and D.H. Ferriss: Mater. Sci. Eng. A, 1997, vol. A238, pp. 317–28.

    CAS  Google Scholar 

  49. R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S.W., Scully, J.R. The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy. Metall Mater Trans A 31, 179–193 (2000). https://doi.org/10.1007/s11661-000-0064-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0064-8

Keywords

Navigation