Skip to main content
Log in

Optimization of Callus Induction and Cell Suspension Culture of Betula pendula Roth for Improved Production of Betulin, Betulinic Acid, and Antioxidant Activity

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

This study aimed to establish an in vitro protocol for callus induction and cell suspension cultures of silver birch (Betula pendula Roth) and to assess the antioxidant activity of cell extract and the accumulation of betulin (B) and betulinic acid (BA). Callus was induced from the inner bark of stems on Gamborg (B5) and Nagata-Takebe (NT) media, and 23 different concentrations of growth regulators were tested. NT medium with 2.5 mg L−1 2,4-dichlorophenoxyacetic acid and 0.5 mg L−1 6-benzylaminopurine was optimal for callus induction. Cell suspension cultures were developed to improve cell growth and metabolite production under different concentrations of NT vitamins. Methanolic cell extracts indicated that the BA content of callus increased from 1 to 9 mo, with a maximum 2.01 mg g−1 (dry weight [DW]) at 9 mo. The highest level of B observed in cell suspension cultures (0.96 mg g−1 DW) was obtained on medium supplemented with 4× NT vitamins. The highest antioxidant activities of the 1,1-diphenyl-2-picrylhydrazyl free radical, 77 and 76%, were found in callus extract at 9 mo and cell extract in the 4× NT vitamin treatment, respectively. In conclusion, the use of NT medium supplemented with 4× NT vitamins effectively increased cell growth and the accumulation of B, BA, and antioxidant activity in cell suspension cultures of B. pendula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Alakurtti S, Mäkelä T, Koskimies S, Yli-Kauhaluoma J (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 29:1–13. doi:10.1016/j.ejps.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30. doi:10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  • Bringmann G, Saeb W, Assi LA, François G, Sankara Narayanan AS, Peters K, Peters EM (1997) Betulinic acid: isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester. Planta Med 63:255–257. doi:10.1055/s-2006-957666

    Article  CAS  PubMed  Google Scholar 

  • Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49:2774–2779. doi:10.1021/jf001413

    Article  CAS  PubMed  Google Scholar 

  • Chauhan M, Kothari SL (2004) Optimization of nutrient levels in the medium increase the efficiency of callus induction and plant regeneration in recalcitrant Indian barley (Hordeum vulgare L.) in vitro. In Vitro Cell Dev Biol – Plant 40:520–527. doi:10.1079/IVP2004565

    Article  CAS  Google Scholar 

  • Co M, Koskela P, Eklund-Akergren P, Srinivas K, King JW, Sjoberga PJR, Turner C (2009) Pressurized liquid extraction of betulin and antioxidants from birch bark. Green Chem 11:668–674. doi:10.1039/b819965e

    Article  CAS  Google Scholar 

  • Cusido RM, Palazon J, Navia Osorio A, Mallol A, Bonfill M, Morales C, Pinol MT (1999) Production of taxol and baccatin ɪɪɪ by a selected Taxus baccata callus line and its derived cell suspension culture. Plant Sci 146:101–107. doi:10.1016/S0168-9452(99)00093-X

    Article  CAS  Google Scholar 

  • Dixon RA (1985) Isolation and maintenance of callus and cell suspension cultures. In: Dixon RA (ed) Plant cell culture: a practical approach. IRL Press, Oxford, pp 1–20

    Google Scholar 

  • Enwerem NM, Okogun JI, Wambebe CO, Okorie DA, Akah PA (2001) Anthelmintic activity of the stem bark extracts of Berlina grandiflora and one of its active principles, betulinic acid. Phytomedicine 8:112–114. doi:10.1078/0944-7113-00023

    Article  CAS  PubMed  Google Scholar 

  • Fan G, Zhan YG, Wang B, Ye YT (2009) Effects of light on growth and triterpenes content in callus Betula platyphylla. J Northeast For 37:1–3

    CAS  Google Scholar 

  • Flekhter OB, Medvedeva NI, Karachurina LT, Baltina LA, Galin FZ, Zarudii FS, Tolstikov GA (2005) Synthesis and pharmacological activity of betulin, betulinic acid and allobetulin esters. Pharm Chem J 39:401–404. doi:10.1007/s11094-005-0167-z

    Article  CAS  Google Scholar 

  • Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, Janzen WP, Chen IS, Lee KH (1994) Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 57:243–247. doi:10.1021/np50104a008

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Huang P, Inoue K (2003) Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol 44:404–411. doi:10.1016/j.jgr.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen E, Pakkanen TT, Alvila L (2006) Phenolic compounds in silver birch (Betula pendula Roth) wood. Holzforschung 60:519–527

    Article  CAS  Google Scholar 

  • Hvoslef-Eide AK, Corke FMK (1997) Embryogenesis specific protein changes in birch suspension cultures. Plant Cell Tiss Organ Cult 51:35–41. doi:10.1023/A:1017914312743

    Article  CAS  Google Scholar 

  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12. doi:10.3389/fmicb.2012.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • IUCN (2001) IUCN Red list categories and criteria. IUCN, Gland

    Google Scholar 

  • Jacob A, Malpathak N (2005) Manipulation of MS and B5 components for enhancement of growth and solasodine production in hairy root cultures of Solanum khasianum Clarke. Plant Cell Tiss Organ Cult 80:247–257. doi:10.1007/s11240-004-0740-2

    Article  CAS  Google Scholar 

  • Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962. doi:10.1021/jf990146l

    Article  CAS  PubMed  Google Scholar 

  • Lingaraju MC, Pathak NN, Begum J, Balaganur V, Bhat RA, Ramachandra HD, Ayanur A, Ram M, Singh V, Kumar D, Kumar D, Tandan SK (2015) Betulinic acid attenuates lung injury by modulation of inflammatory cytokine response in experimentally-induced polymicrobial sepsis in mice. Cytokine 71:101–108. doi:10.1016/j.cyto.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  • Marcocci I, Maguire JJ, Droy-Lefix MT, Packer L (1994) The nitric oxide scavenging activity of Ginkgo biloba extract EGb 761. Biochem Biophysics Res Comm 201:748–755. doi:10.1006/bbrc.1994.1764

    Article  CAS  Google Scholar 

  • Martin C, Parra T, Clemente-Muñoz M, Hernandez-Bermejo JE (2008) Genetic diversity and structure of the endangered Betula pendula subsp. fontqueri populations in the south of Spain. Silva Fen 42:487–498. doi:10.14214/sf.229

    Google Scholar 

  • Mashentseva AA, Dehaen W, Seitembetov TS, Seitembetova AJ (2011) Comparison of the antioxidant activity of the different Betula pendula Roth. Extracts from northern Kazakhastan. J Phytol 3:18–25

    CAS  Google Scholar 

  • Mufflera K, Leipolda D, Schellera MC, Haasb C, Steingroewerb J, Bleyb T, Neuhausc HE, Miratad MA, Schraderd J, Ulbera R (2011) Biotransformation of triterpenes. Proc Biochem 46:1–15. doi:10.1016/j.procbio.2010.07.015

    Article  Google Scholar 

  • Nagata I, Takebe I (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99:12–20. doi:10.1007/BF00392116

    Article  CAS  PubMed  Google Scholar 

  • Nazari J (2012) Optimization of culture medium and sterilization treatments for Betula litwinowii micropropagatin, MS thesis. Faculty of Forest Sciences, Gorgan University of Agriculture Science and Natural Resources, Iran

    Google Scholar 

  • Nuutila AM, Kauppinen V (1992) Nutrient uptake and growth of an embryogenic and a non-embryogenic cell line of birch (Betula pendula Roth.) in suspension culture. Plant Cell Tiss Organ Cult 30:7–13. doi:10.1007/BF00039996

    Article  CAS  Google Scholar 

  • Paul S (2011) Trachyspermum ammi (L.). Fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control 22:725–731. doi:10.1016/j.foodcont.2010.11.003

    Article  CAS  Google Scholar 

  • Payamnoor V, Jafari Hajati R (2015) Assess changes of major secondary metabolites produced in the calluses of Betula pendula by affecting expellant type and medium culture. Research project of Gorgan University of Agricultural Sciences and Natural Resources (GUASNR). No, 21-314-92

  • Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell AC, Beecher CWW, Fong HHS, Kinghorn AD, Brown DM, Wani MC, Wall ME, Hieken TJ, Das Gupta TK, Pezzuto JM (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1:1046–1051. doi:10.1038/nm1095-1046

    Article  CAS  PubMed  Google Scholar 

  • Pokrovskii AG, Shintyapina AB, Pronkina NV, Kozhevnikov VS, Plyasunova OA, Shul’ts EE, Tolstikov GA (2006) Activation of apoptosis by derivatives of betulinic acid in human tumor cells in vitro. Dokl Biochem Biophys 407:94–97. doi:10.1134/S160767290602013X

    Article  CAS  PubMed  Google Scholar 

  • Potze L, Franco S, Kessler JH, Stassi G, Medema JP (2015) Betulinic acid kills colon cancer stem cells. Curr Stem Cell Res Ther 11:8. doi:10.2174/1574888X11666151203223512

    Google Scholar 

  • Rastogi S, Pandey MM, Rawat AKS (2015) Medicinal plants of the genus Betula—traditional uses and a phytochemical–pharmacological review. J Ethnopharmacol 159:62–83. doi:10.1016/j.jep.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  • Recio MC, Giner RM, Máñez S, Gueho J, Julien HR, Hostettmann K, Ríos JL (1995) Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas. Planta Med 61:9–12. doi:10.1055/s-2006-957988

    Article  CAS  PubMed  Google Scholar 

  • Rines HW, McCoy TJ (1981) Tissue culture initiation and plant regeneration in hexaploid species of oats. Crop Sci 21:837–842. doi:10.2135/cropsci1981.0011183X002100060010x

    Article  Google Scholar 

  • Scalbert AL, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Food Sci Nutr 45:287–306. doi:10.1080/1040869059096

    CAS  Google Scholar 

  • Serbin SP, Dillaway DN, Kruger EL (2012) Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. J Exp Bot 63:489–502. doi:10.1093/jxb/err294

    Article  CAS  PubMed  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205. doi:10.1016/j.foodchem.2008.08.008

    Article  CAS  Google Scholar 

  • Simola LK (1985) Propagation of plantlets from leaf callus of Betula pendula f. purpurea. Scientia Hortic 26:77–85. doi:10.1016/0304-4238(85)90104-9

    Article  Google Scholar 

  • Soica CM, Dehelean CA, Peev CI, Aluas M, Zupko I, Kasa P, Alexa E (2012) Physico-chemical comparison study of betulinic acid, betulin and birch bark extract and in vitro investigation of their cytotoxic effects towards skin epidermoid carcinoma (A431), breast carcinoma (MCF7) and cervix adenocarcinoma (HeLa) cell-lines. Nat Prod Res 26:968–974. doi:10.1080/14786419.2010.545352

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PS, Steinhauer A (1981a) Regeneration of birch plants from catkin tissue cultures. Plant Sci Lett 22:379–386. doi:10.1016/0304-4211(81)90084-5

    Article  CAS  Google Scholar 

  • Srivastava PS, Steinhauer A (1981b) Isozymes in differentiating shoot bud cultures of Betula pendula Roth. Z Pflanzenphysiol 103:341–346

    Article  CAS  Google Scholar 

  • Srivastiva PS, Steinhauer A, Glock H (1985) Plantlet differentiation in leaf and root cultures of birch (Betula pendula Roth). Plant Sci 42:209–214. doi:10.1016/0168-9452(85)

    Article  Google Scholar 

  • Tremblay FM (1988) Callus formation from protoplasts of Betula papyrifera March. cell suspension culture. J Plant Phys 133:247–251. doi:10.1016/S0176-1617(88)80146-9

    Article  CAS  Google Scholar 

  • Vaario LM, Otomo Y, Soda R, Ide Y (1995) Plant regeneration from root tissue and establishment of root culture of Japanese white birch (Betula platyphylla var. japonica). Plant Tiss Cult Lett 12:251–258

    Article  CAS  Google Scholar 

  • Wakita Y, Sasamoto H, Yokota S, Yoshizawa N (1995) Callus proliferation from leaf protoplasts using phenylurea type cytokinin, 4PU, in Betula platyphylla VAR. Japonica. In Vitro Cell Dev Biol – Plant 31:183–186. doi:10.1007/BF02632018

    Article  CAS  Google Scholar 

  • Yin CLR, Ya-Guang Z, Chun-Xiao L, Jia-Lei X, Wei Q, Xin-Yu L, Hong-Mei P (2012) Distribution and expression characteristics of triterpenoids and OSC genes in white birch (Betula platyphylla suk.). Mol Biol Rep 39:2321–2328. doi:10.1007/s11033-011-0982-0

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Ma H, Gong Y, Xiao J, Jiang L, Zhan Y, Li C, Ren C, Yang Y (2013) Effect of MeJA and light on the accumulation of betulin and oleanolic acid in the saplings of white birch (Betula platyphylla Suk.). Am J Plant Sci 4:7–15. doi:10.4236/ajps.2013.412A3002

    Article  Google Scholar 

  • Zhang Y, Tao YU, Yang W (2003) Extraction of betulin from bark of Betula platyphylla by supercritical carbon dioxide extraction. J For Res 14:202–204. doi:10.1007/BF02856830

    Article  CAS  Google Scholar 

  • Zhao GL, Yan WD, Cao D (2007) Simultaneous determination of betulin and betulinic acid in white birch bark using RP-HPLC. J Pharm Biomed Anal 43:959–962. doi:10.1016/j.jpba.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Liu Z, Liu W, Han X, Zhao M (2016) Betulin attenuates lung and liver injuries in sepsis. Int Immunopharmacol 30:50–60. doi:10.1016/j.intimp.2015.11.028

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahide Payamnoor.

Additional information

Editor: Wenhao Dai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Hajati, R., Payamnoor, V., Ghasemi Bezdi, K. et al. Optimization of Callus Induction and Cell Suspension Culture of Betula pendula Roth for Improved Production of Betulin, Betulinic Acid, and Antioxidant Activity. In Vitro Cell.Dev.Biol.-Plant 52, 400–407 (2016). https://doi.org/10.1007/s11627-016-9773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-016-9773-6

Keywords

Navigation