Skip to main content
Log in

Slash pine genetic transformation through embryo cocultivation with A. tumefaciens and transgenic plant regeneration

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Agrobacterium-mediated genetic transformation has been widely used to generate transgenic plants in angiosperms. However, progress in conifer species has lagged because of the recalcitrant nature of gene transfer. In this study, a transgenic plant regeneration system has been established for slash pine (Pinus elliottii Engelm.) using Agrobacterium-mediated transformation. Among the different Agrobacterium tumefaciens strains (EHA105, GV3101, and LBA4404) tested, the highest frequency (60%) of transient β-glucuronidase-expressing embryos was obtained from Agrobacterium strain GV3101 with over 330 blue spots per embryo. To improve the frequency of transformation, different cocultivation conditions were analyzed. Combination of Agrobacterium density at OD600 = 0.9, 50 s sonication of embryos, and the addition of 50 μM acetosyringone produced the highest transformation efficiency, in which 56.2% of embryos formed hygromycin-resistant calli. Transient gene expression was observed in cotyledons and hypocotyls, but transgenic plants were only produced from callus cultures derived from embryonic cotyledons of transformed slash pine. Stable integration of transgenes in the plant genome of slash pine was confirmed by polymerase chain reaction, Southern blot, and Northern blot analyses. Transgenic lines with a single T-DNA copy were produced from Agrobacterium strains EHA105 (80.4%), GV3101 (95.7%), and LBA4404 (66%). These results demonstrated that a stable transformation system has been established in slash pine, and this system could provide an opportunity to transfer economically important genes into slash pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Alves S. C.; Worland B.; Thole V.; Snape J. W.; Bevan M. W.; Vain P. A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat. Protoc. 4: 638–649; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Birch R. G. Plant transformation: problems and strategies for practical application. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 297–326; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Boyko A.; Matsuoka A.; Kovalchuk I. High frequency Agrobacterium tumefaciens-mediated plant transformation induced by ammonium nitrate. Plant Cell Rep. 28: 737–757; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Cerda F.; Aquea F.; Gebauer M.; Medina C.; Arce-Johnson P. Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell Tiss. Organ Cult. 70: 251–257; 2002.

    Article  CAS  Google Scholar 

  • Cervera M.; Juarez J.; Navarro A.; Pina J. A.; Duran-Vila N.; Navarro L.; Pena L. Genetic transformation and regeneration of mature tissue of woody fruit plants bypassing the juvenile stage. Transgenic Res. 7: 51–59; 1998.

    Article  CAS  Google Scholar 

  • Charity J. A.; Holland L.; Donaldson S. S.; Grace L.; Walter C. Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tiss. Organ Cult. 70: 51–60; 2002.

    Article  CAS  Google Scholar 

  • Cubitt A. B.; Heim R.; Adams S. R.; Boyd A. E.; Gross L. A.; Tsien R. Y. Understanding, improving, and using green fluorescent proteins. Trends Biochem. Sci. 20: 448–455; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Dillen W.; De Clercq J.; Kapila J.; Zambre M.; Van Montagu M.; Angenon G. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J. 12: 1459–1463; 1997.

    Article  CAS  Google Scholar 

  • Gelvin S. B. Agrobacterium in the genomics age. Plant Physiol. 150: 1665–1676; 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gould J. H.; Zhou Y. X.; Padmanabhan V.; Magallanes-Cedeno M. E.; Newton R. J. Transformation and regeneration of loblolly pine: shoot apex inoculation with Agrobacterium. Mol. Breed. 10: 131–141; 2002.

    Article  CAS  Google Scholar 

  • Gurel S.; Gurel E.; Kaur R.; Wong J.; Meng L.; Tan H. Q.; Lemaux P. G. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep. 28: 429–444; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P.; Svab Z.; Maliga P. The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25: 989–994; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Halfhill M. D.; Richards H. A.; Mabon S. A.; Stewart Jr. C. N. Expression of uidA and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor. Appl. Genet. 103: 659–667; 2001.

    Article  CAS  Google Scholar 

  • Hansen G.; Das A.; Chilton M.-D. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl. Acad. Sci. U. S. A. 91: 7603–7607; 1994.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang Y.; Diner A. M.; Karnosky D. F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev. Biol. Plant 27: 201–207; 1991.

    Article  Google Scholar 

  • James D. J.; Passey A. J.; Barbara D. J.; Bevan M. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep. 7: 658–661; 1989.

    PubMed  CAS  Google Scholar 

  • Jefferson R. A.; Kavanagh T. A.; Bevan M. W. GUS fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907; 1987.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Klimaszewska K.; Lachance D.; Pelletier G.; Lelu M.-A.; Seguin A. Regeneration of transgenic Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell Dev. Biol. Plant 37: 748–755; 2001.

    Article  CAS  Google Scholar 

  • Le V. Q.; Belles-Isles J.; Dusabenyagasani M.; Tremblay F. M. An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. J. Exp. Bot. 52: 2089–2095; 2001.

    PubMed  CAS  Google Scholar 

  • Levee V.; Garin E.; Klimaszewska K.; Seguin A. Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol. Breed. 5: 429–440; 1999.

    Article  CAS  Google Scholar 

  • Maximova S. N.; Dandekar A. M.; Guiltinan M. J. Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: High transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol. Biol. 37: 549–559; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Moore G. A.; Jacono C. C.; Neidigh J. L.; Lawrence S. D.; Cline K. Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep. 11: 238–242; 1992.

    PubMed  CAS  Google Scholar 

  • Mourgues F.; Chevreau E.; Lambert C.; Bondt A. Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep. 16: 245–249; 1996.

    PubMed  CAS  Google Scholar 

  • Peña L.; Cervera M.; Juárez J.; Navarro A.; Pina J. A.; Dura H. N.; Durán-Vila N.; Navarro L. Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep. 14: 616–619; 1995.

    Article  PubMed  Google Scholar 

  • Perl A.; Lotan O.; Abu-Abied M.; Holland D. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat. Biotechnol. 14: 624–628; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J.; Fritsch E. F.; Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY; 1989.

    Google Scholar 

  • Stachel S. E.; Messens E.; Montague M. V.; Zambryski P. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629; 1985.

    Article  Google Scholar 

  • Tang W.; Charles T. M.; Newton R. J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol. Biol. 59: 603–617; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tang W.; Lin J.; Newton R. J. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine. Plant Cell Rep. 26: 673–682; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Tang W.; Luo H.; Newton R. J. Effects of antibiotics on the elimination of Agrobacterium tumefaciens from loblolly pine (Pinus taeda) zygotic embryo explants and on transgenic plant regeneration. Plant Cell Tiss. Organ Cult. 70: 71–81; 2004.

    Article  Google Scholar 

  • Tang W.; Newton R. J.; Charles T. M. Plant regeneration through multiple adventitious shoot differentiation from callus cultures of slash pine (Pinus elliottii). J. Plant Physiol. 163: 98–101; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Trick H. N.; Finer J. J. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 17: 482–488; 1998.

    Article  CAS  Google Scholar 

  • Walter C.; Grace L.; Donaldson S. S.; Moody J.; Gemmell J. E.; van der Maos S.; Kvaalen H.; Lonneborg A. An efficient biolistic transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants. Can. J. For. Res. 29: 1539–1546; 1999.

    Article  Google Scholar 

  • Wenck A. R.; Quinn M.; Whetten R. W.; Pullman G.; Sederoff R. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39: 407–416; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Zale J. M.; Agarwal S.; Loar S.; Steber C. M. Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep. 28: 903–913; 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank members of the Biotechnology Lab at Yangtze University for support. This work was supported by a grant from the education committee of Hubei Providence of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, W., Xiao, B. & Fei, Y. Slash pine genetic transformation through embryo cocultivation with A. tumefaciens and transgenic plant regeneration. In Vitro Cell.Dev.Biol.-Plant 50, 199–209 (2014). https://doi.org/10.1007/s11627-013-9551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9551-7

Keywords

Navigation